题名 | Guided M-Net for High-Resolution Biomedical Image Segmentation with Weak Boundaries |
作者 | |
通讯作者 | Tan, Mingkui |
DOI | |
发表日期 | 2019
|
会议名称 | Ophthalmic Medical Image Analysis
|
ISSN | 16113349
|
会议录名称 | |
卷号 | 11855 LNCS
|
页码 | 43-51
|
会议日期 | 2019
|
会议地点 | Shenzhen, China
|
出版者 | |
摘要 | Biomedical image segmentation plays an important role in automatic disease diagnosis. However, some particular biomedical images have blurred object boundaries, and may contain noises due to the limited performance of imaging device. This issue will highly affects segmentation performance, and will become even severer when images have to be resized to lower resolution on a machine with limited memory. To address this, we propose a guide-based model, called G-MNet, which seeks to exploit edge information from guided map to guide the corresponding lower resolution outputs. The guided map is generated from multi-scale input to provide a better guidance. In these ways, the segmentation model will be more robust to noises and blurred object boundaries. Extensive experiments on two biomedical image datasets demonstrate the effectiveness of the proposed method. |
学校署名 | 其他
|
收录类别 | |
资助项目 | [2017YFC0112404]
; National Natural Science Foundation of China[61602185]
; [RAGR20190103]
; [2017ZT07X183]
; Pearl River S and T Nova Program of Guangzhou[201806010081]
; [2018B010107001]
; National Natural Science Foundation of China[]
|
EI入藏号 | 20194807769155
|
EI主题词 | Computer Aided Analysis
; Diagnosis
; Image Analysis
; Medical Imaging
|
EI分类号 | Medicine And Pharmacology:461.6
; Computer Applications:723.5
; Imaging Techniques:746
|
来源库 | EV Compendex
|
引用统计 |
被引频次[WOS]:6
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/50926 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.South China University of Technology, Guangzhou, China 2.CVTE Research, Guangzhou, China 3.Zhongshan Ophthalmic Center Sun Yat-sen University, Guangzhou, China 4.Tomey Corporation, Nagoya, Japan 5.Southern University of Science and Technology, Shenzhen, China 6.Cixi Institute of BioMedical Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Beijing, China |
推荐引用方式 GB/T 7714 |
Zhang, Shihao,Yan, Yuguang,Yin, Pengshuai,et al. Guided M-Net for High-Resolution Biomedical Image Segmentation with Weak Boundaries[C]:Springer,2019:43-51.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
paper15.pdf(8859KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论