中文版 | English
题名

Guided M-Net for High-Resolution Biomedical Image Segmentation with Weak Boundaries

作者
通讯作者Tan, Mingkui
DOI
发表日期
2019
会议名称
Ophthalmic Medical Image Analysis
ISSN
16113349
会议录名称
卷号
11855 LNCS
页码
43-51
会议日期
2019
会议地点
Shenzhen, China
出版者
摘要

Biomedical image segmentation plays an important role in automatic disease diagnosis. However, some particular biomedical images have blurred object boundaries, and may contain noises due to the limited performance of imaging device. This issue will highly affects segmentation performance, and will become even severer when images have to be resized to lower resolution on a machine with limited memory. To address this, we propose a guide-based model, called G-MNet, which seeks to exploit edge information from guided map to guide the corresponding lower resolution outputs. The guided map is generated from multi-scale input to provide a better guidance. In these ways, the segmentation model will be more robust to noises and blurred object boundaries. Extensive experiments on two biomedical image datasets demonstrate the effectiveness of the proposed method.
© Springer Nature Switzerland AG 2019.

学校署名
其他
收录类别
资助项目
[2017YFC0112404] ; National Natural Science Foundation of China[61602185] ; [RAGR20190103] ; [2017ZT07X183] ; Pearl River S and T Nova Program of Guangzhou[201806010081] ; [2018B010107001] ; National Natural Science Foundation of China[]
EI入藏号
20194807769155
EI主题词
Computer Aided Analysis ; Diagnosis ; Image Analysis ; Medical Imaging
EI分类号
Medicine And Pharmacology:461.6 ; Computer Applications:723.5 ; Imaging Techniques:746
来源库
EV Compendex
引用统计
被引频次[WOS]:6
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50926
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.South China University of Technology, Guangzhou, China
2.CVTE Research, Guangzhou, China
3.Zhongshan Ophthalmic Center Sun Yat-sen University, Guangzhou, China
4.Tomey Corporation, Nagoya, Japan
5.Southern University of Science and Technology, Shenzhen, China
6.Cixi Institute of BioMedical Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Zhang, Shihao,Yan, Yuguang,Yin, Pengshuai,et al. Guided M-Net for High-Resolution Biomedical Image Segmentation with Weak Boundaries[C]:Springer,2019:43-51.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
paper15.pdf(8859KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Shihao]的文章
[Yan, Yuguang]的文章
[Yin, Pengshuai]的文章
百度学术
百度学术中相似的文章
[Zhang, Shihao]的文章
[Yan, Yuguang]的文章
[Yin, Pengshuai]的文章
必应学术
必应学术中相似的文章
[Zhang, Shihao]的文章
[Yan, Yuguang]的文章
[Yin, Pengshuai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。