中文版 | English
题名

Binarized neural networks for resource-efficient hashing with minimizing quantization loss

作者
通讯作者Huang, Heng
发表日期
2019
ISSN
1045-0823
会议录名称
卷号
2019-August
页码
1032-1040
会议地点
Macao, China
出版者
摘要
In order to solve the problem of memory consumption and computational requirements, this paper proposes a novel learning binary neural network framework to achieve a resource-efficient deep hashing. In contrast to floating-point (32-bit) full-precision networks, the proposed method achieves a 32x model compression rate. At the same time, computational burden in convolution is greatly reduced due to efficient Boolean operations. To this end, in our framework, a new quantization loss defined between the binary weights and the learned real values is minimized to reduce the model distortion, while, by minimizing a binary entropy function, the discrete optimization is successfully avoided and the stochastic gradient descend method can be used smoothly. More importantly, we provide two theories to demonstrate the necessity and effectiveness of minimizing the quantization losses for both weights and activations. Numerous experiments show that the proposed method can achieve fast code generation without sacrificing accuracy.
© 2019 International Joint Conferences on Artificial Intelligence. All rights reserved.
学校署名
第一
收录类别
资助项目
U.S. Navy[DBI 1836866] ; U.S. Navy[IIS 1836938] ; U.S. Navy[IIS 1836945] ; U.S. Navy[IIS 1837956] ; U.S. Navy[IIS 1838627] ; U.S. Navy[IIS 1845666] ; U.S. Navy[IIS 1852606]
EI入藏号
20194607696707
来源库
EV Compendex
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50934
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, China
2.School of Electronic Enigineering, Xidian University, China
3.Department of Electrical and Computer Engineering, University of Pittsburgh, United States
4.JD Finance America Corporation, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zheng, Feng,Deng, Cheng,Huang, Heng. Binarized neural networks for resource-efficient hashing with minimizing quantization loss[C]:International Joint Conferences on Artificial Intelligence,2019:1032-1040.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng, Feng]的文章
[Deng, Cheng]的文章
[Huang, Heng]的文章
百度学术
百度学术中相似的文章
[Zheng, Feng]的文章
[Deng, Cheng]的文章
[Huang, Heng]的文章
必应学术
必应学术中相似的文章
[Zheng, Feng]的文章
[Deng, Cheng]的文章
[Huang, Heng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。