中文版 | English
题名

Rectified Encoder Network for High-Dimensional Imbalanced Learning

作者
通讯作者Yao, Xin
DOI
发表日期
2019
ISSN
16113349
EISSN
1611-3349
会议录名称
卷号
11671 LNAI
页码
684-697
会议地点
Yanuka Island, Fiji
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Many existing works have studied the learning on imbalanced data, however, it is still very challenging to handle high-dimensional imbalanced data. One key challenge of learning on imbalanced data is that most learning models usually have a bias towards the majority and its performance will deteriorate in the presence of underrepresented data and severe class distribution skews. One solution is to synthesize the minority data to balance the class distribution, but it may lead to more overlapping, especially in the high-dimensional setting. To alleviate the above challenges, in this paper, we present a novel Rectified Encoder Network (REN) for high-dimensional imbalanced learning tasks. The main contribution is that: (1) To deal with high-dimensionality, REN encodes high-dimensional imbalanced data into low dimensional latent codes as a latent representation. (2) To obtain a discriminative representation, we introduce a Rectifier to match the latent codes with our proposed Predefined Codes, which disentangles the overlapping among classes. (3) During rectification, in the Predefined Latent Distribution, we can efficiently identify and generate informative samples to maintain the balance of class distribution, so that the minority classes will not be neglected. The experimental results on several high-dimensional and image imbalanced data sets indicate that our REN obtains good representation code for classification and visualize the reason why REN gets better performance in high-dimensional imbalanced learning.
© 2019, Springer Nature Switzerland AG.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[61603338] ; National Natural Science Foundation of China[61703370] ; National Natural Science Foundation of China[61866010] ; Division of Arctic Sciences[ARC LP150100671] ; Division of Arctic Sciences[DP180100106] ; Shenzhen Peacock Plan[KQTD2016112514355531]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000558157900053
EI入藏号
20194107504180
EI主题词
Artificial intelligence ; Classification (of information) ; Codes (symbols)
EI分类号
Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4
来源库
EV Compendex
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50940
专题工学院_计算机科学与工程系
作者单位
1.Shenzhen Key Laboratory of Computational Intelligence, University Key Laboratory of Evolving Intelligent Systems of Guangdong Province, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China
2.Centre for Artificial Intelligence (CAI), University of Technology Sydney, Ultimo, Australia
3.Zhijiang College, Zhejiang University of Technology, Hangzhou Shi, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zheng, Tao,Chen, Wei-Jie,Tsang, Ivor,et al. Rectified Encoder Network for High-Dimensional Imbalanced Learning[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Verlag,2019:684-697.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng, Tao]的文章
[Chen, Wei-Jie]的文章
[Tsang, Ivor]的文章
百度学术
百度学术中相似的文章
[Zheng, Tao]的文章
[Chen, Wei-Jie]的文章
[Tsang, Ivor]的文章
必应学术
必应学术中相似的文章
[Zheng, Tao]的文章
[Chen, Wei-Jie]的文章
[Tsang, Ivor]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。