中文版 | English
题名

Tumor segmentation and survival prediction in glioma with deep learning

作者
通讯作者Luo, Lin
DOI
发表日期
2019
ISSN
16113349
会议录名称
卷号
11384 LNCS
页码
83-93
会议地点
Granada, Spain
出版者
摘要
Every year, about 238,000 patients are diagnosed with brain tumor in the world. Accurate and robust tumor segmentation and prediction of patients’ overall survival are important for diagnosis, treatment planning and risk factor characterization. Here we present a deep learning-based framework for brain tumor segmentation and survival prediction in glioma using multimodal MRI scans. For tumor segmentation, we use ensembles of three different 3D CNN architectures for robust performance through majority rule. This approach can effectively reduce model bias and boost performance. For survival prediction, we extract 4524 radiomic features from segmented tumor region. Then decision tree and cross validation are used to select potent features. Finally, a random forest model is trained to predict the overall survival of patients. On 2018 MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS), our method ranks at second place and 5th place out of 60+ participating teams on survival prediction task and segmentation task respectively, achieving a promising 61.0% accuracy on classification of long-survivors, mid-survivors and short-survivors.
© Springer Nature Switzerland AG 2019.
学校署名
第一
收录类别
EI入藏号
20191306707783
EI主题词
Brain ; Decision trees ; Diagnosis ; Forecasting ; Medical imaging ; Patient treatment ; Tumors
EI分类号
Bioengineering and Biology:461 ; Systems Science:961
来源库
EV Compendex
引用统计
被引频次[WOS]:26
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50945
专题南方科技大学
生命科学学院_生物系
作者单位
1.Southern University of Science and Technology, Shenzhen; 518055, China
2.Peking University, Beijing; 100871, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Sun, Li,Zhang, Songtao,Luo, Lin. Tumor segmentation and survival prediction in glioma with deep learning[C]:Springer Verlag,2019:83-93.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sun, Li]的文章
[Zhang, Songtao]的文章
[Luo, Lin]的文章
百度学术
百度学术中相似的文章
[Sun, Li]的文章
[Zhang, Songtao]的文章
[Luo, Lin]的文章
必应学术
必应学术中相似的文章
[Sun, Li]的文章
[Zhang, Songtao]的文章
[Luo, Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。