题名 | Tumor segmentation and survival prediction in glioma with deep learning |
作者 | |
通讯作者 | Luo, Lin |
DOI | |
发表日期 | 2019
|
ISSN | 16113349
|
会议录名称 | |
卷号 | 11384 LNCS
|
页码 | 83-93
|
会议地点 | Granada, Spain
|
出版者 | |
摘要 | Every year, about 238,000 patients are diagnosed with brain tumor in the world. Accurate and robust tumor segmentation and prediction of patients’ overall survival are important for diagnosis, treatment planning and risk factor characterization. Here we present a deep learning-based framework for brain tumor segmentation and survival prediction in glioma using multimodal MRI scans. For tumor segmentation, we use ensembles of three different 3D CNN architectures for robust performance through majority rule. This approach can effectively reduce model bias and boost performance. For survival prediction, we extract 4524 radiomic features from segmented tumor region. Then decision tree and cross validation are used to select potent features. Finally, a random forest model is trained to predict the overall survival of patients. On 2018 MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS), our method ranks at second place and 5th place out of 60+ participating teams on survival prediction task and segmentation task respectively, achieving a promising 61.0% accuracy on classification of long-survivors, mid-survivors and short-survivors. © Springer Nature Switzerland AG 2019. |
学校署名 | 第一
|
收录类别 | |
EI入藏号 | 20191306707783
|
EI主题词 | Brain
; Decision trees
; Diagnosis
; Forecasting
; Medical imaging
; Patient treatment
; Tumors
|
EI分类号 | Bioengineering and Biology:461
; Systems Science:961
|
来源库 | EV Compendex
|
引用统计 |
被引频次[WOS]:26
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/50945 |
专题 | 南方科技大学 生命科学学院_生物系 |
作者单位 | 1.Southern University of Science and Technology, Shenzhen; 518055, China 2.Peking University, Beijing; 100871, China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Sun, Li,Zhang, Songtao,Luo, Lin. Tumor segmentation and survival prediction in glioma with deep learning[C]:Springer Verlag,2019:83-93.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论