题名 | Fast parameter adaptation for few-shot image captioning and visual question answering |
作者 | |
通讯作者 | Yang, Yi |
DOI | |
发表日期 | 2018
|
会议录名称 | |
页码 | 54-62
|
会议地点 | Seoul, Korea, Republic of
|
出版地 | 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
|
出版者 | |
摘要 | Given only a few image-text pairs, humans can learn to detect semantic concepts and describe the content. For machine learning algorithms, they usually require a lot of data to train a deep neural network to solve the problem. However, it is challenging for the existing systems to generalize well to the few-shot multi-modal scenario, because the learner should understand not only images and texts but also their relationships from only a few examples. In this paper, we tackle two multi-modal problems, i.e., image captioning and visual question answering (VQA), in the few-shot setting. We propose Fast Parameter Adaptation for Image-Text Modeling (FPAIT) that learns to learn jointly understanding image and text data by a few examples. In practice, FPAIT has two benefits. (1) Fast learning ability. FPAIT learns proper initial parameters for the joint image-text learner from a large number of different tasks. When a new task comes, FPAIT can use a small number of gradient steps to achieve a good performance. (2) Robust to few examples. In few-shot tasks, the small training data will introduce large biases in Convolutional Neural Networks (CNN) and damage the learner's performance. FPAIT leverages dynamic linear transformations to alleviate the side effects of the small training set. In this way, FPAIT flexibly normalizes the features and thus reduces the biases during training. Quantitatively, FPAIT achieves superior performance on both few-shot image captioning and VQA benchmarks. © 2018 Association for Computing Machinery. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Data to Decisions Cooperative Research Centres[]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000509665700007
|
EI入藏号 | 20185006246260
|
EI主题词 | Benchmarking
; Deep neural networks
; Linear transformations
; Mathematical transformations
; Natural language processing systems
; Neural networks
; Semantics
|
EI分类号 | Data Processing and Image Processing:723.2
; Mathematical Transformations:921.3
|
来源库 | EV Compendex
|
引用统计 |
被引频次[WOS]:35
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/50959 |
专题 | 南方科技大学 |
作者单位 | 1.SUSTech-UTS Joint Centre of CIS, Southern University of Science and Technology, United States 2.CAI, University of Technology Sydney, Australia 3.Information Science Academy, CETC, China 4.CCST, Zhejiang University, China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Dong, Xuanyi,Zhu, Linchao,Zhang, De,et al. Fast parameter adaptation for few-shot image captioning and visual question answering[C]. 1515 BROADWAY, NEW YORK, NY 10036-9998 USA:Association for Computing Machinery, Inc,2018:54-62.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论