中文版 | English
题名

Watching a small portion could be as good as watching all: Towards efficient video classification

作者
发表日期
2018
ISSN
1045-0823
会议录名称
卷号
2018-July
页码
705-711
会议地点
Stockholm, Sweden
出版者
摘要
We aim to significantly reduce the computational cost for classification of temporally untrimmed videos while retaining similar accuracy. Existing video classification methods sample frames with a predefined frequency over entire video. Differently, we propose an end-to-end deep reinforcement approach which enables an agent to classify videos by watching a very small portion of frames like what we do. We make two main contributions. First, information is not equally distributed in video frames along time. An agent needs to watch more carefully when a clip is informative and skip the frames if they are redundant or irrelevant. The proposed approach enables the agent to adapt sampling rate to video content and skip most of the frames without the loss of information. Second, in order to have a confident decision, the number of frames that should be watched by an agent varies greatly from one video to another. We incorporate an adaptive stop network to measure confidence score and generate timely trigger to stop the agent watching videos, which improves efficiency without loss of accuracy. Our approach reduces the computational cost significantly for the large-scale YouTube-8M dataset, while the accuracy remains the same.
© 2018 International Joint Conferences on Artificial Intelligence. All right reserved.
学校署名
第一
收录类别
EI入藏号
20184406016240
EI主题词
Artificial intelligence ; Classification (of information)
EI分类号
Information Theory and Signal Processing:716.1 ; Artificial Intelligence:723.4
来源库
EV Compendex
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50987
专题南方科技大学
作者单位
1.SUSTech-UTS Joint Centre of CIS, Southern University of Science and Technology, United Kingdom
2.Centre for Artificial Intelligence, University of Technology Sydney, Australia
3.Institute of Information and Control, Hangzhou Dianzi University, China
4.Information Science Academy, CETC, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Fan, Hehe,Xu, Zhongwen,Zhu, Linchao,et al. Watching a small portion could be as good as watching all: Towards efficient video classification[C]:International Joint Conferences on Artificial Intelligence,2018:705-711.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fan, Hehe]的文章
[Xu, Zhongwen]的文章
[Zhu, Linchao]的文章
百度学术
百度学术中相似的文章
[Fan, Hehe]的文章
[Xu, Zhongwen]的文章
[Zhu, Linchao]的文章
必应学术
必应学术中相似的文章
[Fan, Hehe]的文章
[Xu, Zhongwen]的文章
[Zhu, Linchao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。