中文版 | English
题名

Soft filter pruning for accelerating deep convolutional neural networks

作者
通讯作者Fu, Yanwei
发表日期
2018
ISSN
1045-0823
会议录名称
卷号
2018-July
页码
2234-2240
会议地点
Stockholm, Sweden
出版者
摘要
This paper proposed a Soft Filter Pruning (SFP) method to accelerate the inference procedure of deep Convolutional Neural Networks (CNNs). Specifically, the proposed SFP enables the pruned filters to be updated when training the model after pruning. SFP has two advantages over previous works: (1) Larger model capacity. Updating previously pruned filters provides our approach with larger optimization space than fixing the filters to zero. Therefore, the network trained by our method has a larger model capacity to learn from the training data. (2) Less dependence on the pre-trained model. Large capacity enables SFP to train from scratch and prune the model simultaneously. In contrast, previous filter pruning methods should be conducted on the basis of the pre-trained model to guarantee their performance. Empirically, SFP from scratch outperforms the previous filter pruning methods. Moreover, our approach has been demonstrated effective for many advanced CNN architectures. Notably, on ILSCRC-2012, SFP reduces more than 42% FLOPs on ResNet-101 with even 0.2% top-5 accuracy improvement, which has advanced the state-of-the-art.
© 2018 International Joint Conferences on Artificial Intelligence. All right reserved.
学校署名
第一
收录类别
资助项目
Division of Arctic Sciences[DE170101415] ; Google[CRC] ; Data to Decisions Cooperative Research Centres[]
EI入藏号
20184406016514
EI主题词
Convolution ; Neural networks
EI分类号
Information Theory and Signal Processing:716.1
来源库
EV Compendex
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50992
专题南方科技大学
作者单位
1.SUSTech-UTS Joint Centre of CIS, Southern University of Science and Technology, United Kingdom
2.CAI, University of Technology Sydney, Australia
3.School of Data Science, Fudan University, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
He, Yang,Kang, Guoliang,Dong, Xuanyi,et al. Soft filter pruning for accelerating deep convolutional neural networks[C]:International Joint Conferences on Artificial Intelligence,2018:2234-2240.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He, Yang]的文章
[Kang, Guoliang]的文章
[Dong, Xuanyi]的文章
百度学术
百度学术中相似的文章
[He, Yang]的文章
[Kang, Guoliang]的文章
[Dong, Xuanyi]的文章
必应学术
必应学术中相似的文章
[He, Yang]的文章
[Kang, Guoliang]的文章
[Dong, Xuanyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。