中文版 | English
题名

Enhanced pairwise learning for personalized ranking from implicit feedback

作者
通讯作者Tang, Ke
DOI
发表日期
2017
ISSN
1865-0929
会议录名称
卷号
791
页码
580-595
会议地点
Harbin, China
出版者
摘要
One-class collaborative filtering with implicit feedback has attracted much attention, mainly due to the widespread of implicit data in real world. Pairwise methods have been shown to be the state-of-the-art methods for one-class collaborative filtering, but the assumption that users prefer observed items to unobserved items may not always hold. Besides, existing pairwise methods may not perform well in terms of Top-N recommendation. In this paper, we propose a new approach called EBPR, which relaxes the former simple pairwise preference assumption by further exploiting the hidden connection in observed items and unobserved items. EBPR can also be used as a basic method and has the extensive applicability, i.e., when combining our model with former pairwise methods, better performance can also be achieved. Empirical studies show that our algorithm outperforms the state-of-the-art methods on four real-world datasets.
© Springer Nature Singapore Pte Ltd 2017.
学校署名
通讯
收录类别
资助项目
Ministry of Science and Technology of the People's Republic of China[2017YFC0804003]
EI入藏号
20174704440186
EI主题词
Computation theory
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Information Sources and Analysis:903.1
来源库
EV Compendex
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/51011
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Technology, USTC-Birmingham Joint Research Institute in Intelligent Computation and Its Applications, University of Science and Technology of China, Hefei, China
2.Shenzhen Key Laboratory of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhang, Yunzhou,Yuan, Bo,Tang, Ke. Enhanced pairwise learning for personalized ranking from implicit feedback[C]:Springer Verlag,2017:580-595.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Yunzhou]的文章
[Yuan, Bo]的文章
[Tang, Ke]的文章
百度学术
百度学术中相似的文章
[Zhang, Yunzhou]的文章
[Yuan, Bo]的文章
[Tang, Ke]的文章
必应学术
必应学术中相似的文章
[Zhang, Yunzhou]的文章
[Yuan, Bo]的文章
[Tang, Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。