中文版 | English
题名

Multifractal analysis on the return series of stock markets using MF-DFA method

作者
发表日期
2014
ISSN
1868422X
会议录名称
卷号
426
页码
107-115
会议地点
Shanghai, China
出版者
摘要
Analyzing the daily returns of NASDAQ Composite Index by using MF-DFA method has led to findings that the return series does not fit the normal distribution and its leptokurtic indicates that a single-scale index is insufficient to describe the stock price fluctuation. Furthermore, it is found that the long-term memory characteristics are a main source of multifractality in time series. Based on the main reason causing multifractality, a contrast of the original return series and the reordered return series is made to demonstrate the stock price index fluctuation, suggesting that the both return series have multifractality. In addition, the empirical results verify the validity of the measures which illustrates that the stock market fails to reach the weak form efficiency.
© IFIP International Federation for Information Processing 2014.
学校署名
其他
收录类别
EI入藏号
20151600768604
EI主题词
Commerce ; Fractals ; Normal distribution ; Semiotics ; Time series
EI分类号
Mathematics:921 ; Probability Theory:922.1 ; Mathematical Statistics:922.2
来源库
EV Compendex
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/51061
专题商学院_信息系统与管理工程系
作者单位
1.Henley Business School, University of Reading, Reading; RG6 6UD, United Kingdom
2.School of Information Management and Engineering, Shanghai University of Finance and Economics, 777 Guoding Rd, Shanghai; 200433, China
3.South University of Science and Technology of China, 1028 Xueyuan Ave, Shenzhen; 518055, China
推荐引用方式
GB/T 7714
Wang, Wanting,Liu, Kecheng,Qin, Zheng. Multifractal analysis on the return series of stock markets using MF-DFA method[C]:Springer New York LLC,2014:107-115.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Wanting]的文章
[Liu, Kecheng]的文章
[Qin, Zheng]的文章
百度学术
百度学术中相似的文章
[Wang, Wanting]的文章
[Liu, Kecheng]的文章
[Qin, Zheng]的文章
必应学术
必应学术中相似的文章
[Wang, Wanting]的文章
[Liu, Kecheng]的文章
[Qin, Zheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。