中文版 | English
题名

Weighted type of quantile regression and its application

作者
通讯作者Jiang, Xuejun
发表日期
2014
ISSN
2078-0958
会议录名称
卷号
2210
期号
January
会议地点
Kowloon, Hong kong
出版者
摘要
In this paper we introduce a weighted composite quantile regression (CQR) estimation approach and study its application in nonlinear models such as exponential models and ARCH type of models. The weighted CQR is augmented by using a data-driven weighting scheme. With the error distribution unspecified, the proposed estimators share robustness from quantile regression and achieve nearly the same efficiency as the oracle maximum likelihood estimator(MLE) for a variety of error distributions including the normal, mixed-normal, Student's t, Cauchy distributions and etc, We also suggest an algorithm for fast implementation of the proposed methodology. Simulations are conducted to compare the performance of different estimators, and the proposed approach is used to analyze the daily S&P 500 Composite index, which endorse our theoretical results.
学校署名
第一 ; 通讯
收录类别
资助项目
National Science Foundation[11101432] ; National Science Foundation[11361013]
EI入藏号
20153101104700
EI主题词
Arches ; Regression analysis
EI分类号
Structural Members and Shapes:408.2 ; Statistical Methods:922 ; Mathematical Statistics:922.2
来源库
EV Compendex
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/51062
专题理学院_数学系
作者单位
1.Department of Financial Mathematics and Financial Engineering, South University of Science and Technology of China, Guiyang, China
2.University of Guizhou Finance and Economics, Guiyang, China
第一作者单位数学系
通讯作者单位数学系
第一作者的第一单位数学系
推荐引用方式
GB/T 7714
Jiang, Xuejun,Xia, Tian,Xie, Dejun. Weighted type of quantile regression and its application[C]:Newswood Limited,2014.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang, Xuejun]的文章
[Xia, Tian]的文章
[Xie, Dejun]的文章
百度学术
百度学术中相似的文章
[Jiang, Xuejun]的文章
[Xia, Tian]的文章
[Xie, Dejun]的文章
必应学术
必应学术中相似的文章
[Jiang, Xuejun]的文章
[Xia, Tian]的文章
[Xie, Dejun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。