中文版 | English
题名

Accelerating exact inner product retrieval by CPU-GPU systems

作者
DOI
发表日期
2019
会议录名称
页码
1277-1280
会议地点
Paris, France
出版地
1515 BROADWAY, NEW YORK, NY 10036-9998 USA
出版者
摘要
Recommender systems are widely used in many applications, e.g., social network, e-commerce. Inner product retrieval (IPR) is the core subroutine in Matrix Factorization (MF) based recommender systems. It consists of two phases: i) inner product computation and ii) top-k items retrieval. The performance bottleneck of existing solutions is inner product computation phase. Exploiting Graphics Processing Units (GPUs) to accelerate the computation intensive workloads is the gold standard in data mining and machine learning communities. However, it is not trivial to apply CPU-GPU systems to boost the performance of IPR solutions due to the nature complex of the IPR problem. In this work, we analyze the time cost of each phase in IPR solutions at first. Second, we exploit the characteristics of CPU-GPU systems to improve performance. Specifically, the computation tasks of IPR solution are heterogeneously processed in CPU-GPU systems. Third, we demonstrate the efficiency of our proposal on four standard real datasets.
© 2019 Association for Computing Machinery.
学校署名
第一
语种
英语
相关链接[来源记录]
收录类别
资助项目
Natural Science Foundation of Guangdong Province[2018A03 0310129]
WOS研究方向
Computer Science ; Information Science & Library Science
WOS类目
Computer Science, Information Systems ; Information Science & Library Science
WOS记录号
WOS:000501488900193
EI入藏号
20194307586939
EI主题词
Computer graphics ; Data mining ; Electronic commerce ; Factorization ; Program processors ; Recommender systems
EI分类号
Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Mathematics:921
来源库
Web of Science
引用统计
被引频次[WOS]:7
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/51067
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering, Southern University of Science and Technology, PCL Research Center of Networks and Communications, Peng Cheng Laboratory, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Xiang, Long,Tang, Bo,Yang, Chuan. Accelerating exact inner product retrieval by CPU-GPU systems[C]. 1515 BROADWAY, NEW YORK, NY 10036-9998 USA:Association for Computing Machinery, Inc,2019:1277-1280.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiang, Long]的文章
[Tang, Bo]的文章
[Yang, Chuan]的文章
百度学术
百度学术中相似的文章
[Xiang, Long]的文章
[Tang, Bo]的文章
[Yang, Chuan]的文章
必应学术
必应学术中相似的文章
[Xiang, Long]的文章
[Tang, Bo]的文章
[Yang, Chuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。