中文版 | English
题名

Defining an Alert Mechanism for Detecting likely threats to National Security

作者
DOI
发表日期
2019-01-22
会议名称
IEEE International Conference on Big Data, Big Data 2018
会议录名称
页码
1575-1580
会议日期
2018
会议地点
Seattle, WA, United states
出版者
摘要

The paper presents an Alert Mechanism for analysing and detecting National Security threats using Social Media posts as the primary source of information. This mechanism is meant to be an early warning system that can identify situations where a critical mass of individuals feel attracted towards a disruptive cause, based on emotions and Human Security aspects, which may lead to societal tipping points. Comprehensive experiments on real-world events related to disruptive and non-disruptive cases demonstrate both the robustness and effectiveness of the proposed mechanism.

关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20191106615824
EI主题词
Big Data ; Natural Language Processing Systems ; Social Networking (Online) ; Uncertainty Analysis
EI分类号
Military Engineering:404.1 ; Computer Software, Data HAndling And Applications:723 ; Data Processing And Image Processing:723.2 ; Probability Theory:922.1
Scopus记录号
2-s2.0-85062633157
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/51223
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science,Durham University,Durham,United Kingdom
2.Department of Computer Science and Engineering,SUSTech,Shenzhen,China
3.Inlecom Systems,Belgium
推荐引用方式
GB/T 7714
Cardenas,Pedro,Obara,Boguslaw,Theodoropoulos,Georgios,et al. Defining an Alert Mechanism for Detecting likely threats to National Security[C]:Institute of Electrical and Electronics Engineers Inc.,2019:1575-1580.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cardenas,Pedro]的文章
[Obara,Boguslaw]的文章
[Theodoropoulos,Georgios]的文章
百度学术
百度学术中相似的文章
[Cardenas,Pedro]的文章
[Obara,Boguslaw]的文章
[Theodoropoulos,Georgios]的文章
必应学术
必应学术中相似的文章
[Cardenas,Pedro]的文章
[Obara,Boguslaw]的文章
[Theodoropoulos,Georgios]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。