中文版 | English
题名

Temporal Graph Offset Reconstruction: Towards Temporally Robust Graph Representation Learning

作者
DOI
发表日期
2019-01-22
会议录名称
页码
3737-3746
会议地点
Seattle, WA, United states
出版者
摘要
Graphs are a commonly used construct for representing relationships between elements in complex high dimensional datasets. Many real-world phenomenon are dynamic in nature, meaning that any graph used to represent them is inherently temporal. However, many of the machine learning models designed to capture knowledge about the structure of these graphs ignore this rich temporal information when creating representations of the graph. This results in models which do not perform well when used to make predictions about the future state of the graph - especially when the delta between time stamps is not small. In this work, we explore a novel training procedure and an associated unsupervised model which creates graph representations optimised to predict the future state of the graph. We make use of graph convo-lutional neural networks to encode the graph into a latent representation, which we then use to train our temporal offset reconstruction method, inspired by auto-encoders, to predict a later time point - multiple time steps into the future. Using our method, we demonstrate superior performance for the task of future link prediction compared with none-temporal state-of-the-art baselines. We show our approach to be capable of outperforming non-temporal baselines by 38% on a real world dataset.
关键词
学校署名
非南科大
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Nvidia[]
EI入藏号
20191106616391
EI主题词
Big data ; Forecasting
EI分类号
Data Processing and Image Processing:723.2
Scopus记录号
2-s2.0-85062599093
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/51224
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Department of Computer Science,Durham University,Durham,United Kingdom
2.School of Computing,Newcastle University,Newcastle,United Kingdom
3.School of Computer Science and Engineering,SUSTech,Shenzhen,China
4.InlecomSystems,Brussels,Belgium
推荐引用方式
GB/T 7714
Bonner,Stephen,Brennan,John,Kureshi,Ibad,et al. Temporal Graph Offset Reconstruction: Towards Temporally Robust Graph Representation Learning[C]:Institute of Electrical and Electronics Engineers Inc.,2019:3737-3746.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1109@BigData.2018(681KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Bonner,Stephen]的文章
[Brennan,John]的文章
[Kureshi,Ibad]的文章
百度学术
百度学术中相似的文章
[Bonner,Stephen]的文章
[Brennan,John]的文章
[Kureshi,Ibad]的文章
必应学术
必应学术中相似的文章
[Bonner,Stephen]的文章
[Brennan,John]的文章
[Kureshi,Ibad]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@BigData.2018.8622636.pdf
格式: Adobe PDF
文件名: 10.1109@BigData.2018.8622636.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。