[1] Rowe D M. CRC handbook of thermoelectrics[M]. Boca Raton, FL: CRC Press, 1995: 1–3.
[2] Stockholm J G. Applications in thermoelectricity[J]. Materials Today: Proceedings, 2018, 5(4): 10257–10276.
[3] Bell L E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems[J]. Science, 2008, 321(5895): 1457–1461.
[4] Shi X-L, Zou J, Chen Z-G. Advanced Thermoelectric Design: From Materials and Structures to Devices[J]. Chemical Reviews, 2020, 120(15): 7399–7515.
[5] Shakouri A. Recent Developments in Semiconductor Thermoelectric Physics and Materials[J]. Annual Review of Materials Research, 2011, 41(1): 399–431.
[6] Uher C. Materials aspect of thermoelectricity[M]. Boca Raton: CRC Press, 2017: 39–42.
[7] He R, Schierning G, Nielsch K. Thermoelectric Devices: A Review of Devices, Architectures, and Contact Optimization[J]. Advanced Materials Technologies, 2018, 3(4): 1700256.
[8] Moshwan R, Yang L, Zou J, et al. Eco-Friendly SnTe Thermoelectric Materials: Progress and Future Challenges[J]. Advanced Functional Materials, 2017, 27(43): 1703278.
[9] Zhang X, Zhao L-D. Thermoelectric materials: Energy conversion between heat and electricity[J]. Journal of Materiomics, 2015, 1(2): 92–105.
[10] Ren Z F, Lan Y C, Zhang Q Y. Advanced Thermoelectrics: Materials, Contacts, Devices, and Systems[M]. Boca Raton, FL: CRC Press, 2017: 3–407.
[11] Liu Z-Y, Zhu J-L, Tong X, et al. A review of CoSb3-based skutterudite thermoelectric materials[J]. Journal of Advanced Ceramics, 2020, 9(6): 647–673.
[12] Huang L, Zhang Q, Yuan B, et al. Recent progress in Half-Heusler thermo-electric materials[J]. Materials Research Bulletin, 2016, 76: 107–112.
[13] Xia K, Hu C, Fu C, et al. Half-Heusler thermoelectric materials[J]. Applied Physics Letters, 2021, 118(14): 140503.
[14] Shuai J, Mao J, Song S, et al. Recent progress and future challenges on thermoelectric Zintl materials[J]. Materials Today Physics, 2017, 1: 74–95.
[15] Liu K-F, Xia S-Q. Recent progresses on thermoelectric Zintl phases: Structures, materials and optimization[J]. Journal of Solid State Chemistry, 2019, 270: 252–264.
[16] Wu Y. Metal Oxides in Energy Technologies[M]. Elsevier, 2018: 49–72.
[17] Minnich A J, Lee H, Wang X W, et al. Modeling study of thermoelectric SiGe nanocomposites[J]. Physical Review B, American Physical Society, 2009, 80(15): 155327.
[18] Poudel B, Hao Q, Ma Y, et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys[J]. Science, 2008, 320(5876): 634–638.
[19] Mamur H, Bhuiyan M R A, Korkmaz F, et al. A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 4159–4169.
[20] Xiao Y, Wu H, Cui J, et al. Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity[J]. Energy & Environmental Science, 2018, 11(9): 2486–2495.
[21] You L, Liu Y, Li X, et al. Boosting the thermoelectric performance of PbSe through dynamic doping and hierarchical phonon scattering[J]. Energy & Environmental Science, 2018, 11(7): 1848–1858.
[22] Shu R, Zhou Y, Wang Q, et al. Mg3+δSbxBi2−x Family: A Promising Substitute for the State-of-the-Art n-Type Thermoelectric Materials near Room Temperature[J]. Advanced Functional Materials, 2019, 29(4): 1807235.
[23] Mao J, Zhu H, Ding Z, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials[J]. Science, 2019, 365(6452): 495–498.
[24] Jiang G, He J, Zhu T, et al. High Performance Mg2(Si,Sn) Solid Solutions: a Point Defect Chemistry Approach to Enhancing Thermoelectric Properties[J]. Advanced Functional Materials, 2014, 24(24): 3776–3781.
[25] Pei Y, Zheng L, Li W, et al. Interstitial Point Defect Scattering Contributing to High Thermoelectric Performance in SnTe[J]. Advanced Electronic Materials, 2016, 2(6): 1600019.
[26] Hu L, Zhu T, Liu X, et al. Point Defect Engineering of High-Performance Bismuth-Telluride-Based Thermoelectric Materials[J]. Advanced Functional Materials, 2014, 24(33): 5211–5218.
[27] Xin J, Zhang Y, Wu H, et al. Multiscale Defects as Strong Phonon Scatters to Enhance Thermoelectric Performance in Mg2Sn1–xSbx Solid Solutions[J]. Small Methods, 2019, 3(12): 1900412.
[28] He J, Girard S N, Kanatzidis M G, et al. Microstructure-Lattice Thermal Conductivity Correlation in Nanostructured PbTe0.7S0.3 Thermoelectric Materials[J]. Advanced Functional Materials, 2010, 20(5): 764–772.
[29] Xin J, Wu H, Liu X, et al. Mg vacancy and dislocation strains as strong phonon scatterers in Mg2Si1−xSbx thermoelectric materials[J]. Nano Energy, 2017, 34: 428–436.
[30] Gayner C, Amouyal Y. Energy Filtering of Charge Carriers: Current Trends, Challenges, and Prospects for Thermoelectric Materials[J]. Advanced Functional Materials, 2020, 30(18): 1901789.
[31] Tan G, Zeier W G, Shi F, et al. High Thermoelectric Performance SnTe−In2Te3 Solid Solutions Enabled by Resonant Levels and Strong Vacancy Phonon Scattering[J]. Chemistry of Materials, 2015, 27(22): 7801–7811.
[32] Zhu Y, Han Z, Jiang F, et al. Thermodynamic criterions of the thermoelectric performance enhancement in Mg2Sn through the self-compensation vacancy[J]. Materials Today Physics, 2021, 16: 100327.
[33] Nolas G S, Wang D, Beekman M. Transport properties of polycrystalline Mg2Si1−ySby (0≤y<0.4)[J]. Physical Review B, 2007, 76(23).
[34] Nolas G S, Wang D, Lin X. Synthesis and low temperature transport properties of Mg2Ge1–ySby[J]. physica status solidi (RRL) – Rapid Research Letters, 2007, 1(6): 223–225.
[35] Kato D, Iwasaki K, Yoshino M, et al. High carrier concentration in Mg2Si1−xSbx (0≤x≤0.10) prepared by a combination of liquid-solid reaction, ball milling, and spark plasma sintering[J]. Intermetallics, 2017, 81: 47–51.
[36] Pei Y, Shi X, LaLonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011, 473(7345): 66–69.
[37] Liu W, Tan X, Yin K, et al. Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of n-Type Mg2Si1−xSnx Solid Solutions[J]. Physical Review Letters, 2012, 108(16).
[38] Zhang J, Liu R, Cheng N, et al. High-Performance Pseudocubic Thermoelectric Materials from Non-cubic Chalcopyrite Compounds[J]. Advanced Materials, 2014, 26(23): 3848–3853.
[39] Condron C L, Kauzlarich S M, Gascoin F, et al. Thermoelectric properties and microstructure of Mg3Sb2[J]. Journal of Solid State Chemistry, 2006, 179(8): 2252–2257.
[40] 余冠廷. Mg2XⅣ(X=Si,Ge,Sn)与Mg3X2V(XV=Sb,Bi)基材料的制备及热电性能[D]. 杭州, 浙江大学, 2019: 67–100.
[41] Li A, Fu C, Zhao X, et al. High-Performance Mg3Sb2-xBix Thermoelectrics: Progress and Perspective[J]. Research, 2020, 2020: 1934848.
[42] Shang H, Liang Z, Xu C, et al. N-Type Mg3Sb2-xBix Alloys as Promising Thermoelectric Materials[J]. Research, 2020, 2020: 1219461.
[43] Bhardwaj A, Rajput A, Shukla A K, et al. Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation[J]. RSC Advances, 2013, 3(22): 8504.
[44] Kim S H, Kim C M, Hong Y-K, et al. Thermoelectric properties of Mg3Sb2-xBix single crystals grown by Bridgman method[J]. Materials Research Express, 2015, 2(5): 055903.
[45] Shuai J, Wang Y, Kim H S, et al. Thermoelectric properties of Na-doped Zintl compound: Mg3−xNaxSb2[J]. Acta Materialia, 2015, 93: 187–193.
[46] Tamaki H, Sato H K, Kanno T. Isotropic Conduction Network and Defect Chemistry in Mg3-δSb2-Based Layered Zintl Compounds with High Thermoelectric Performance[J]. Advanced Materials, 2016, 28(46): 10182–10187.
[47] Zhang J, Song L, Iversen B B. Insights into the design of thermoelectric Mg3Sb2 and its analogs by combining theory and experiment[J]. npj Computational Materials, 2019, 5(1): 1-17.
[48] Sun X, Li X, Yang J, et al. Achieving band convergence by tuning the bonding ionicity in n‐type Mg3Sb2[J]. Journal of Computational Chemistry, 2019, 40(18): 1693–1700.
[49] Zhang J, Song L, Sist M, et al. Chemical bonding origin of the unexpected isotropic physical properties in thermoelectric Mg3Sb2 and related materials[J]. Nature Communications, 2018, 9: 4716.
[50] Li J, Zhang S, Wang B, et al. Designing high-performance n-type Mg3Sb2-based thermoelectric materials through forming solid solutions and biaxial strain[J]. Journal of Materials Chemistry A, 2018, 6(41): 20454–20462.
[51] Peng W, Petretto G, Rignanese G-M, et al. An Unlikely Route to Low Lattice Thermal Conductivity: Small Atoms in a Simple Layered Structure[J]. Joule, 2018, 2(9): 1879–1893.
[52] Morelli D T, Jovovic V, Heremans J P. Intrinsically Minimal Thermal Conductivity in Cubic I-V-VI2 Semiconductors[J]. Physical Review Letters, 2008, 101(3): 035901.
[53] Zhu Y F, Xia Y, Wang Y C, et al. Violation of the T−1 Relationship in the Lattice Thermal Conductivity of Mg3Sb2 with Locally Asymmetric Vibrations[J]. Research, 2020, 2020: 4589786.
[54] Agne M T, Imasato K, Anand S, et al. Heat capacity of Mg3Sb2, Mg3Bi2, and their alloys at high temperature[J]. Materials Today Physics, 2018, 6: 83–88.
[55] Xin J, Li G, Auffermann G, et al. Growth and transport properties of Mg3X2 (X = Sb, Bi) single crystals[J]. Materials Today Physics, 2018, 7: 61–68.
[56] Gorai P, Ortiz B R, Toberer E S, et al. Investigation of n-type doping strategies for Mg3Sb2[J]. Journal of Materials Chemistry A, 2018, 6(28): 13806–13815.
[57] Gorai P, Toberer E S, Stevanović V. Effective n-type doping of Mg3Sb2 with group-3 elements[J]. Journal of Applied Physics, 2019, 125(2): 025105.
[58] Zhang J, Song L, Borup K A, et al. New Insight on Tuning Electrical Transport Properties via Chalcogen Doping in n-type Mg3Sb2-based Thermoelectric Materials[J]. Advanced Energy Materials, 2018, 8(16): 1702776.
[59] Imasato K, Wood M, Kuo J J, et al. Improved stability and high thermoelectric performance through cation site doping in n-type La-doped Mg3Sb1.5Bi0.5[J]. Journal of Materials Chemistry A, 2018, 6(41): 19941–19946.
[60] Song S W, Mao J, Bordelon M, et al. Joint effect of magnesium and yttrium on enhancing thermoelectric properties of n-type Zintl Mg3+δY0.02Sb1.5Bi0.5[J]. Materials Today Physics, 2019, 8: 25–33.
[61] Imasato K, Kang S D, Snyder G J. Exceptional thermoelectric performance in Mg3Sb0.6Bi1.4 for low-grade waste heat recovery[J]. Energy & Environmental Science, 2019, 12(3): 965–971.
[62] Kim S, Kim C, Hong Y-K, et al. Thermoelectric properties of Mn-doped Mg–Sb single crystals[J]. Journal of Materials Chemistry A, 2014, 2(31): 12311–12316.
[63] Han Z, Gui Z, Zhu Y B, et al. The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg3+δSb2-yBiy near Room Temperature[J]. Research, 2020, 2020: 1672051.
[64] Jiang G, He J, Zhu T, et al. High Performance Mg2(Si,Sn) Solid Solutions: a Point Defect Chemistry Approach to Enhancing Thermoelectric Properties[J]. Advanced Functional Materials, 2014, 24(24): 3776–3781.
[65] 徐祖耀. 材料热力学[M]. 北京: 高等教育出版社, 2009: 105.
[66] Shi X, Zhou Z, Zhang W, et al. Solid solubility of Ir and Rh at the Co sites of skutterudites[J]. Journal of Applied Physics, 2007, 101(12): 123525.
[67] Hildebrand J H. Solubility XII: regular solutions[J]. Journal of the American Chemical Society, 1929, 51(1): 66–80.
[68] Hillert M, Staffansson L I. The regular solution model for stoichiometric phases and ionic melts[J]. Acta Chemical Scandinavic, 1970, 24: 3618–3626.
[69] Shang H, Liang Z, Xu C, et al. N-type Mg3Sb2-Bi with improved thermal stability for thermoelectric power generation[J]. Acta Materialia, 2020, 201: 572–579.
[70] Dong E, Tan S, Wang J, et al. Thermodynamic activity of solute in multicomponent alloy from first-principles: Excess Mg in Mg3(Sb1-xBix)2 as an example[J]. Calphad, 2021, 74: 102318.
[71] Hillert M, Jansson B, Sundman B, et al. A two-sublattice model for molten solutions with different tendency for ionization[J]. Metallurgical Transactions A, 1984, 16A: 261-266.
[72] Viennois R, Colinet C, Jund P, et al. Phase stability of ternary antifluorite type compounds in the quasi-binary systems Mg2X–Mg2Y (X, Y = Si, Ge, Sn) via ab-initio calculations[J]. Intermetallics, 2012, 31: 145–151.
[73] Ektarawong A, Alling B. Stability of SnSe1-xSx solid solutions revealed by first-principles cluster expansion[J]. Journal of Physics: Condensed Matter, 2018,30: 1–5.
[74] Ohno S, Imasato K, Anand S, et al. Phase Boundary Mapping to Obtain n-type Mg3Sb2-Based Thermoelectrics[J]. Joule, 2018, 2(1): 141–154.
[75] Chong X, Guan P-W, Wang Y, et al. Understanding the Intrinsic P-Type Behavior and Phase Stability of Thermoelectric α-Mg3Sb2[J]. ACS Applied Energy Materials, 2018, 1(11): 6600–6608.
[76] Gaskell D R, Laughlin D E. Introduction to the Thermodynamics of Materials[M]. 6th Edition. CRC Press, 2017: 277, 288.
[77] Paliwal M, Jung I-H. Thermodynamic modeling of the Mg–Bi and Mg–Sb binary systems and short-range-ordering behavior of the liquid solutions[J]. Calphad, 2009, 33(4): 744–754.
[78] Jiang Y, Smith J R, Evans A G. Temperature dependence of the activity of Al in dilute Ni(Al) solid solutions[J]. Physical Review B, 2006, 74(22): 224110.
[79] Gao X, Ren H, Wang H, et al. Activity coefficient and solubility of yttrium in Fe-Y dilute solid solution[J]. Journal of Rare Earths, 2016, 34(11): 1168–1172.
[80] Srivastava G P. The Physics of Phonons[M]. New York: Routledge, 2019: 123–130.
[81] Li W, Carrete J, A. Katcho N, et al. ShengBTE: A solver of the Boltzmann transport equation for phonons[J]. Computer Physics Communications, 2014, 185(6): 1747–1758.
[82] Schelling P K, Phillpot S R, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity[J]. Physical Review B, 2002, 65(14): 144306.
[83] Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity[J]. The Journal of Chemical Physics, 1997, 106(14): 6082–6085.
[84] Kubo R. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems[J]. Journal of the Physical Society of Japan, 1957, 12(6): 570–586.
[85] Green M S. Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids[J]. The Journal of Chemical Physics, 1954, 22(3): 398–413.
[86] McQuarrie D A, Statistical Mechanics[M], New York: Harper & Row, 2000: 467–495.
[87] Dickey J M, Paskin A. Computer Simulation of the Lattice Dynamics of Solids[J]. Physical Review, 1969, 188(3): 1407–1418.
[88] Ladd A J C, Moran B, Hoover W G. Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics[J]. Physical Review B, 1986, 34(8): 5058–5064.
[89] Howell P C. Comparison of molecular dynamics methods and interatomic potentials for calculating the thermal conductivity of silicon[J]. The Journal of Chemical Physics, 2012, 137(22): 224111.
[90] Fan Z, Pereira L F C, Wang H-Q, et al. Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations[J]. Physical Review B, 2015, 92(9).
[91] Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1–19.
[92] Zhang J, Song L, Pedersen S H et al. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands[J]. Nature Communications, 2017, 8: 13901.
[93] Shuai J, Ge B, Mao J, et al. Significant Role of Mg Stoichiometry in Designing High Thermoelectric Performance for Mg3(Sb,Bi)2-Based n-Type Zintls[J]. Journal of the American Chemical Society, 2018, 140(5): 1910–1915.
[94] Imasato K, Ohno S, Kang S D, et al. Improving the thermoelectric performance in Mg3-xSb1.5Bi0.49Te0.01 by reducing excess Mg[J]. APL Materials, 2018, 6(1): 016106.
[95] Wang Z, Safarkhani S, Lin G, et al. Uncertainty quantification of thermal conductivities from equilibrium molecular dynamics simulations[J]. International Journal of Heat and Mass Transfer, 2017, 112: 267–278.
[96] Lennard-Jones J E. Cohesion[J]. Proceedings of the Physical Society, 1931, 43(5): 461–482.
[97] Stillinger F H, Weber T A. Computer simulation of local order in condensed phases of silicon[J]. Physical Review B, 1985, 31(8): 5262–5271.
[98] Tersoff J. New empirical approach for the structure and energy of covalent systems[J]. Physical Review B, 1988, 37(12): 6991–7000.
[99] Yang H, Zhu Y, Dong E, et al. Dual adaptive sampling and machine learning interatomic potentials for modeling materials with chemical bond hierarchy[J]. Physical Review B, 2021, 104(9): 094310.
[100] Korotaev P, Novoselov I, Yanilkin A, et al. Accessing thermal conductivity of complex compounds by machine learning interatomic potentials[J]. Physical Review B, 2019, 100(14): 144308.
[101] 杨宏亮. 机器学习原子间势与复杂材料体系热输运研究[D]. 上海, 中国科学院大学(上海硅酸盐研究所), 2022: 68–75.
[102] Sholl D S, Steckel J A. Density Functional Theory [M]. Hoboken: Wiley, 2009: 1–28.
[103] Cohen M L, Louie S G. Fundamentals of Condensed Matter Physics[M]. UK: Cambridge University Press, 2016:142–149.
[104] Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Physical Review, 1964, 136(3B): B864–B871.
[105] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Physical Review, 1965, 140(4A): A1133–A1138.
[106] Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Physical Review B, 1981, 23(10): 5048–5079.
[107] Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1992, 46(11): 6671–6687.
[108] Langreth D C, Mehl M J. Beyond the local-density approximation in calculations of ground-state electronic properties[J]. Physical Review B, 1983, 28(4): 1809–1834.
[109] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A, 1988, 38(6): 3098–3100.
[110] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23): 13244–13249.
[111] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 1996, 77(18): 3865–3868.
[112] Perdew J P, Kurth S, Zupan A, et al. Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation[J]. Physical Review Letters, 1999, 82(12): 2544–2547.
[113] Heyd J, Scuseria G E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional[J]. The Journal of Chemical Physics, 2004, 121(3): 1187–1192.
[114] Vydrov O A, Scuseria G E. Assessment of a long-range corrected hybrid functional[J]. The Journal of Chemical Physics, 2006, 125(23): 234109.
[115] Kikuchi R. A Theory of Cooperative Phenomena[J]. Physical Review, 1951, 81(6): 988–1003.
[116] Sanchez J M, de Fontaine D. The fee Ising model in the cluster variation approximation[J]. Physical Review B, 1978, 17(7): 2926–2936.
[117] Sanchez J M, Ducastelle F, Gratias D. Generalized cluster description of multicomponent systems[J]. Physica A: Statistical Mechanics and its Applications, 1984, 128(1): 334–350.
[118] Kikuchi R. CVM Entropy Algebra[J]. Progress of Theoretical Physics Supplement, 1994, 115: 1–26.
[119] Mohri T, Sanchez J M, De Fontaine D. Overview no. 43: Binary ordering prototype phase diagrams in the cluster variation approximation[J]. Acta Metallurgica, 1985, 33(7): 1171–1185.
[120] Laks D B, Wei S-H, Zunger A. Evolution of alloy properties with long-range order[J]. Physical Review Letters, 1992, 69(26): 3766–3769.
[121] van de Walle A, Asta M, Ceder G. The alloy theoretic automated toolkit: A user guide[J]. Calphad, 2002, 26(4): 539–553.
[122] Kadkhodaei S, Muñoz J A. Cluster Expansion of Alloy Theory: A Review of Historical Development and Modern Innovations[J]. JOM, 2021, 73(11): 3326–3346.
[123] Fedorov M, Wróbel J S, Fernández-Caballero A, et al. Phase stability and magnetic properties in fcc Fe-Cr-Mn-Ni alloys from first-principles modeling[J]. Physical Review B, 2020, 101(17).
[124] van de Walle A. Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit[J]. Calphad, 2009, 33(2): 266–278.
[125] Pomrehn G S, Toberer E S, Snyder G J, et al. Predicted Electronic and Thermodynamic Properties of a Newly Discovered Zn8Sb7 Phase[J]. Journal of the American Chemical Society, 2011, 133(29): 11255–11261.
[126] Tan S, Nan P, Xia K, et al. Sublattice Short-Range Order and Modified Electronic Structure in Defective Half-Heusler Nb0.8CoSb[J]. The Journal of Physical Chemistry C, 2021, 125(1): 1125–1133.
[127] Fernández-Caballero A, Fedorov M, Wróbel J, et al. Configurational Entropy in Multicomponent Alloys: Matrix Formulation from Ab Initio Based Hamiltonian and Application to the FCC Cr-Fe-Mn-Ni System[J]. Entropy, 2019, 21(1): 68.
[128] Žguns P A, Ruban A V, Skorodumova N V. Ordering and phase separation in Gd-doped ceria: a combined DFT, cluster expansion and Monte Carlo study[J]. Physical Chemistry Chemical Physics, 2017, 19(39): 26606–26620.
[129] Wróbel J S, Nguyen-Manh D, Kurzydłowski K J, et al. A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys[J]. Journal of Physics: Condensed Matter, 2017, 29(14): 145403.
[130] van de Walle A, Ceder G. Automating first-principles phase diagram calculations[J]. Journal of Phase Equilibria, 2002, 23(4): 348–359.
[131] Landau D P, Binder K. A guide to Monte Carlo simulations in statistical physics[M]. 4th edition. UK: Cambridge University Press, 2015: 125.
[132] van de Walle A, Asta M. Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic[J]. Modelling and Simulation in Materials Science and Engineering, 2002, 10(5): 521–538.
[133] Dünweg B, Landau D P. Phase diagram and critical behavior of the Si-Ge unmixing transition: A Monte Carlo study of a model with elastic degrees of freedom[J]. Physical Review B, 1993, 48(19): 14182–14197.
[134] Laradji M, Landau D P, Dünweg B. Structural properties of Si1−xGex alloys: A Monte Carlo simulation with the Stillinger-Weber potential[J]. Physical Review B, 1995, 51(8): 4894–4902.
[135] Terakura K, Akai H. Interatomic Potential and Structural Stability[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, 133–142.
[136] Kohan A F, Tepesch P D, Ceder G, et al. Computation of alloy phase diagrams at low temperatures[J]. Computational Materials Science, 1998, 9(3): 389–396.
[137] Woodward C, Asta M, Kresse G, et al. Density of constitutional and thermal point defects in L12 Al3Sc[J]. Physical Review B, 2001, 63(9): 094103.
[137] Alder B J, Wainwright T E. Phase Transition for a Hard Sphere System[J]. The Journal of Chemical Physics, 1957, 27(5): 1208–1209.
[139] Haile J M. Molecular Dynamics Simulation[M]. New York: Wiley, 1997: 225–310.
[140] Rapaport D C. The Art of Molecular Dynamics Simulation[M]. 2nd edition. UK: Cambridge University Press, 2004: 1–2.
[141] Allen M P, Tildesley D J. Computer simulation of liquids[M]. 2nd edition. Oxford, UK: Oxford University Press, 2017: 4.
[142] Hollingsworth S A, Dror R O. Molecular Dynamics Simulation for All[J]. Neuron, 2018, 99(6): 1129–1143.
[143] Verlet L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules[J]. Physical Review, 1967, 159(1): 98–103.
[144] Swope W C, Andersen H C, Berens P H, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters[J]. The Journal of Chemical Physics, 1982, 76(1): 637–649.
[145] Jones J E, Chapman S. On the determination of molecular fields. —I. From the variation of the viscosity of a gas with temperature[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1924, 106(738): 441–462.
[146] Jones J E, Chapman S. On the determination of molecular fields. —II. From the equation of state of a gas[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1924, 106(738): 463–477.
[147] Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals[J]. Physical Review B, 1984, 29(12): 6443–6453.
[148] Daw M S, Foiles S M, Baskes M I. The embedded-atom method: a review of theory and applications[J]. Materials Science Reports, 1993, 9(7): 251–310.
[149] Brommer P, Gähler F. Potfit: effective potentials from ab initio data[J]. Modelling and Simulation in Materials Science and Engineering, 2007, 15(3): 295–304.
[150] Tersoff J. Empirical interatomic potential for silicon with improved elastic properties[J]. Physical Review B, 1988, 38(14): 9902–9905.
[151] Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8): 3684–3690.
[152] Martyna G J, Klein M L, Tuckerman M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics[J]. The Journal of Chemical Physics, 1992, 97(4): 2635–2643.
[153] Nosé S. A molecular dynamics method for simulations in the canonical ensemble[J]. Molecular Physics, 1984, 52(2): 255–268.
[154] Hoover W G. Canonical dynamics: Equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3): 1695–1697.
[155] Attig N, Binder K, Grubmüller H. Computational Soft Matter: From Synthetic Polymers to Proteins, Lecture Notes[M]. Jülich: NIC, 2004: 10.
[156] Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy Surfaces[J]. Physical Review Letters, 2007, 98(14): 146401.
[157] Gubaev K, Podryabinkin E V, Hart G L W, et al. Accelerating high-throughput searches for new alloys with active learning of interatomic potentials[J]. Computational Materials Science, 2019, 156: 148–156.
[158] Grabowski B, Ikeda Y, Srinivasan P, et al. Ab initio vibrational free energies including anharmonicity for multicomponent alloys[J]. npj Computational Materials, 2019, 5(1): 1–6.
[159] Novoselov I I, Yanilkin A V, Shapeev A V, et al. Moment tensor potentials as a promising tool to study diffusion processes[J]. Computational Materials Science, 2019, 164: 46–56.
[160] Novikov I S, Suleimanov Y V, Shapeev A V. Automated calculation of thermal rate coefficients using ring polymer molecular dynamics and machine-learning interatomic potentials with active learning[J]. Physical Chemistry Chemical Physics, 2018, 20(46): 29503–29512.
[161] Novikov I S, Shapeev A V, Suleimanov Y V. Ring polymer molecular dynamics and active learning of moment tensor potential for gas-phase barrierless reactions: Application to S+H2[J]. The Journal of Chemical Physics, 2019, 151(22): 224105.
[162] Qiu W, Xi L, Wei P, et al. Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy[J]. Proceedings of the National Academy of Sciences, 2014, 111(42): 15031–15035.
[163] Yang J, Wang Y, Yang H, et al. Thermal transport in thermoelectric materials with chemical bond hierarchy[J]. Journal of Physics: Condensed Matter, 2019, 31(18): 183002.
[164] Zhang L, Lin D-Y, Wang H, et al. Active learning of uniformly accurate interatomic potentials for materials simulation[J]. Physical Review Materials, 2019, 3(2): 023804.
[165] Smith J S, Nebgen B, Lubbers N, et al. Less is more: Sampling chemical space with active learning[J]. The Journal of Chemical Physics, 2018, 148(24): 241733.
[166] Singraber A, Morawietz T, Behler J, et al. Parallel Multistream Training of High-Dimensional Neural Network Potentials[J]. Journal of Chemical Theory and Computation, 2019, 15(5): 3075–3092.
[167] Bartók A P, Kondor R, Csányi G. On representing chemical environments[J]. Physical Review B, 2013, 87(18): 184115.
[168] Artrith N, Behler J. High-dimensional neural network potentials for metal surfaces: A prototype study for copper[J]. Physical Review B, 2012, 85(4): 045439.
[169] Khorshidi A, Peterson A A. Amp: A modular approach to machine learning in atomistic simulations[J]. Computer Physics Communications, 2016, 207: 310–324.
[170] Smith J S, Isayev O, Roitberg A E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost[J]. Chemical Science, 2017, 8(4): 3192–3203.
[171] Gastegger M, Schwiedrzik L, Bittermann M, et al. wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials[J]. The Journal of Chemical Physics, 2018, 148(24): 241709.
[172] Bartók A P, Payne M C, Kondor R, et al. Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons[J]. Physical Review Letters, 2010, 104(13): 136403.
[173] Deringer V L, Csányi G. Machine learning based interatomic potential for amorphous carbon[J]. Physical Review B, 2017, 95(9): 094203.
[174] Bartók A P, Kermode J, Bernstein N, et al. Machine Learning a General-Purpose Interatomic Potential for Silicon[J]. Physical Review X, 2018, 8(4): 041048.
[175] Deringer V L, Pickard C J, Csányi G. Data-Driven Learning of Total and Local Energies in Elemental Boron[J]. Physical Review Letters, 2018, 120(15): 156001.
[176] Braams B J, Bowman J M. Permutationally invariant potential energy surfaces in high dimensionality[J]. International Reviews in Physical Chemistry, 2009, 28(4): 577–606.
[177] Shapeev A V. Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials[J]. Multiscale Modeling & Simulation, 2016, 14(3): 1153–1173.
[178] Drautz R. Atomic cluster expansion for accurate and transferable interatomic potentials[J]. Physical Review B, 2019, 99(1): 014104.
[179] Lysogorskiy Y, Oord C van der, Bochkarev A, et al. Performant implementation of the atomic cluster expansion (PACE) and application to copper and silicon[J]. npj Computational Materials, 2021, 7(1): 1–12.
[180] Zuo Y, Chen C, Li X, et al. Performance and Cost Assessment of Machine Learning Interatomic Potentials[J]. The Journal of Physical Chemistry A, 2020, 124(4): 731–745.
[181] Novikov I S, Gubaev K, Podryabinkin E V, et al. The MLIP package: moment tensor potentials with MPI and active learning[J]. Machine Learning: Science and Technology, 2021, 2(2): 025002.
[182] Wang H, Zhang L, Han J, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics[J]. Computer Physics Communications, 2018, 228: 178–184.
[183] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169–11186.
[184] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15–50.
[185] Medeiros P V C, Stafström S, Björk J. Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: Retaining an effective primitive cell band structure by band unfolding[J]. Physical Review B, 2014, 89(4): 041407.
[186] Medeiros P V C, Tsirkin S S, Stafström S, et al. Unfolding spinor wave functions and expectation values of general operators: Introducing the unfolding-density operator[J]. Physical Review B, 2015, 91(4): 041116.
[187] Togo A, Tanaka I. First principles phonon calculations in materials science[J]. Scripta Materialia, 2015, 108: 1–5.
[188] Momma K, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis[J]. Journal of Applied Crystallography, 2008, 41(3): 653–658.
[189] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 18(1): 015012.
[190] Shuai J, Mao J, Song S, et al. Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties[J]. Energy & Environmental Science, 2017, 10(3): 799–807.
[191] Pan Y, Yao M, Hong X, et al. Mg3(Bi,Sb)2 single crystals towards high thermoelectric performance[J]. Energy & Environmental Science, 2020, 6(13): 1717-1724.
[192] Bhardwaj A, Chauhan N S, Goel S, et al. Tuning the carrier concentration using Zintl chemistry in Mg3Sb2, and its implications for thermoelectric figure-of-merit[J]. Physical Chemistry Chemical Physics, 2016, 18(8): 6191–6200.
[193] Bhardwaj A, Misra D K. Enhancing thermoelectric properties of a p-type Mg3Sb2-based Zintl phase compound by Pb substitution in the anionic framework[J]. RSC Advance, 2014, 4(65): 34552–34560.
[194] Ponnambalam V, Morelli D T. On the Thermoelectric Properties of Zintl Compounds Mg3Bi2-xPnx (Pn = P and Sb)[J]. Journal of Electronic Materials, 2013, 42(7): 1307–1312.
[195] Xin H X, Qin X Y, Jia J H, et al. Thermoelectric properties of nanocrystalline (Mg1−xZnx)3Sb2 isostructural solid solutions fabricated by mechanical alloying[J]. Journal of Physics D: Applied Physics, 2009, 42(16): 165403.
[196] Pizzini S. Physical Chemistry of Semiconductor Materials and Processes[M].UK: Wiley, 2015.
[197] Tang Y, Hanus R, Chen S, et al. Solubility design leading to high figure of merit in low-cost Ce-CoSb3 skutterudites[J]. Nature Communications, 2015, 6(1): 7584.
[198] Tang Y, Qiu Y, Xi L, et al. Phase diagram of In–Co–Sb system and thermoelectric properties of In-containing skutterudites[J]. Energy & Environmental Science, 2014, 7(2): 812–819.
[199] Komisarchik G, Gelbstein Y, Fuks D. Solubility of Ti in thermoelectric PbTe compound[J]. Intermetallics, 2017, 89: 16–21.
[200] Jood P, Male J P, Anand S, et al. Na Doping in PbTe: Solubility, Band Convergence, Phase Boundary Mapping, and Thermoelectric Properties[J]. Journal of the American Chemical Society, 2020, 142(36): 15464–15475.
[201] Li X, Yang P, Wang Y, et al. Phase Boundary Mapping in ZrNiSn Half-Heusler for Enhanced Thermoelectric Performance[J]. Research, 2020, 2020: 1–9.
[201] Ohno S, Imasato K, Anand S, et al. Phase Boundary Mapping to Obtain n-type Mg3Sb2-Based Thermoelectrics[J]. Joule, 2018, 2(1): 141–154.
[203] Ohno S, Aydemir U, Amsler M, et al. Achieving zT>1 in Inexpensive Zintl Phase Ca9Zn4+xSb9 by Phase Boundary Mapping[J]. Advanced Functional Materials, 2017, 27(20): 1606361.
[204] Ortiz B R, Gordiz K, Gomes L C, et al. Carrier density control in Cu2HgGeTe4 and discovery of Hg2GeTe4 via phase boundary mapping[J]. Journal of Materials Chemistry A, 2019, 7(2): 621–631.
[205] Matsushita H, Hagiwara E, Katsui A. Phase diagram and thermoelectric properties of Ag3−xSb1+xTe4 system[J]. Journal of Materials Science, 2004, 39(20): 6299–6301.
[206] Blöchl P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953–17979.
[207] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188–5192.
[208] Togo A, Tanaka I. First principles phonon calculations in materials science[J]. Scripta Materialia, 2015, 108: 1–5.
[209] Zhang X, Jin L, Dai X, et al. Topological Type-II Nodal Line Semimetal and Dirac Semimetal State in Stable Kagome Compound Mg3Bi2[J]. The Journal of Physical Chemistry Letters, 2017, 8(19): 4814–4819.
[210] Watson L M, Marshall C A W, Cardoso C P. On the electronic structure of the semiconducting compounds Mg3Bi2 and Mg3Sb2[J]. Journal of Physics F: Metal Physics, 1984, 14(1): 113–121.
[211] van de Walle A, Tiwary P, de Jong M, et al. Efficient stochastic generation of special quasirandom structures[J]. Calphad, 2013, 42: 13–18.
[212] Fuks D, Dorfman S, Piskunov S, et al. Ab initio thermodynamics of BacSr(1−c)TiO3 solid solutions[J]. Physical Review B, 2005, 71(1): 014111.
[213] Liu Z-K. First-Principles Calculations and CALPHAD Modeling of Thermodynamics[J]. Journal of Phase Equilibria and Diffusion, 2009, 30(5): 517.
[214] Kaufman L, Ågren J. CALPHAD, first and second generation–Birth of the materials genome[J]. Scripta Materialia, 2014, 70: 3–6.
[215] Sundman B, Chen Q, Du Y. A Review of Calphad Modeling of Ordered Phases[J]. Journal of Phase Equilibria and Diffusion, 2018, 39(5): 678–693.
[216] Emsley J. The Elements [M]. 3rd edition. Oxford: Clarendon Press, 1998.
[217] Eckert C A, Irwin R B, Smith J S. Thermodynamic activity of magnesium in several highly-solvating liquid alloys[J]. Metallurgical Transactions B, 1983, 14(3): 451–458.
[218] Egan J J. Thermodynamics of liquid magnesium alloys using CaF2 solid electrolytes[J]. Journal of Nuclear Materials, 1974, 51(1): 30–35.
[219] Nayeb-Hashemi A A, Clark J B. The Bi-Mg (Bismuth-Magnesium) system[J]. Bulletin of Alloy Phase Diagrams, 1985, 6(6): 528–533.
[220] Palatnik L S, Fedorov G V, Bogatov P N, et al. Study of structure and electrical properties of the Mg-Sb, Mg-Bi and Mg-Bi-Sb systems [J]. Izv. Akad. Nauk SSSR, Neorganic Material, 1969, 5: 1377-1380.
[221] Wang H, LaLonde A D, Pei Y, et al. The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions[J]. Advanced Functional Materials, 2013, 23(12): 1586–1596.
[222] Dung D D, Hung N T. Structural, Optical, and Magnetic Properties of the New (1-x)Bi0.5Na0.5TiO3+xMgCoO3-δ Solid Solution System[J]. Journal of Superconductivity and Novel Magnetism, 2020, 33(5): 1249–1256.
[223] Fu C, Zhu T, Liu Y, et al. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT>1[J]. Energy & Environmental Science, 2015, 8(1): 216–220.
[224] Li L, Muckerman J T, Hybertsen M S, et al. Phase diagram, structure, and electronic properties of (Ga1-xZnx)(N1-xOx) solid solutions from DFT-based simulations[J]. Physical Review B, 2011, 83(13): 134202.
[225] Huang B, Kobayashi H, Yamamoto T, et al. Solid-Solution Alloying of Immiscible Ru and Cu with Enhanced CO Oxidation Activity[J]. Journal of the American Chemical Society, 2017, 139(13): 4643–4646.
[226] Zeng C, Huang H, Zhang T, et al. Fabrication of Heterogeneous-Phase Solid-Solution Promoting Band Structure and Charge Separation for Enhancing Photocatalytic CO2 Reduction: A Case of ZnXCa1−XIn2S4[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 27773–27783.
[227] Hasebe M, Nishizawa T. Calculation of phase diagrams of the iron-copper and cobalt-copper systems[J]. Calphad, 1980, 4(2): 83–100.
[228] Biswas K, He J, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416): 414–418.
[229] Sanchez J M, Ducastelle F, Gratias D. Generalized cluster description of multicomponent systems[J]. Physica A: Statistical Mechanics and its Applications, 1984, 128(1–2): 334–350.
[230] Fontaine D D. Cluster Approach to Order-Disorder Transformations in Alloys[A]. Solid State Physics[M]. Elsevier, 1994, 47: 33–176.
[231] Tran F, Blaha P. Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential[J]. Physical Review Letters, 2009, 102(22): 226401.
[232] Wang Y, Zhang X, Liu Y, et al. Optimizing the thermoelectric performance of p-type Mg3Sb2 by Sn doping[J]. Vacuum, 2020, 177: 109388.
[233] Li H, Li M, Wu Y, et al. Site occupation behavior of sulfur and phosphorus in NiAl, TiAl and FeAl[J]. Intermetallics, 2012, 28: 156–163.
[234] Gusev A I. Short-range order and diffuse scattering in nonstoichiometric compounds[J]. Uspekhi Fizicheskih Nauk, 2006, 176(7): 717.
[235] Cowley J M. Short- and Long-Range Order Parameters in Disordered Solid Solutions[J]. Physical Review, 1960, 120(5): 1648–1657.
[236] Oates W A. Configurational Entropies of Mixing in Solid Alloys[J]. Journal of Phase Equilibria and Diffusion, 2007, 28(1): 79–89.
[237] Qin J Y. A New Model for the Configurational Entropy of Mixing in Liquid Alloys Based on Short-Range Order[J]. Acta Physico-Chimica Sinica, 2012, 28(07): 1586–1592.
[238] Saito W, Hayashi K, Huang Z, et al. Enhancing the Thermoelectric Performance of Mg2Sn Single Crystals via Point Defect Engineering and Sb Doping[J]. ACS Applied Materials & Interfaces, 2020, 12(52): 57888–57897.
[239] Broido D A, Malorny M, Birner G, et al. Intrinsic lattice thermal conductivity of semiconductors from first principles[J]. Applied Physics Letters, 2007, 91(23): 231922.
[240] Ma T. First-principles Modeling of Thermal Transport in Materials: Achievements, Opportunities, and Challenges[J]. International Journal of Thermophysics, 2020: 41:9.
[241] Lindsay L, Katre A, Cepellotti A, et al. Perspective on ab initio phonon thermal transport[J]. Journal of Applied Physics, 2019, 126(5): 050902.
[242] Lindsay L, Hua C, Ruan X L, et al. Survey of ab initio phonon thermal transport[J]. Materials Today Physics, 2018, 7: 106–120.
[243] Lindsay L. First Principles Peierls-Boltzmann Phonon Thermal Transport: A Topical Review[J]. Nanoscale and Microscale Thermophysical Engineering, 2016, 20(2): 67–84.
[244] Behler J. Perspective: Machine learning potentials for atomistic simulations[J]. The Journal of Chemical Physics, American Institute of Physics, 2016, 145(17): 170901.
[245] Podryabinkin E V, Shapeev A V. Active learning of linearly parametrized interatomic potentials[J]. Computational Materials Science, 2017, 140: 171–180.
[246] Huang Y, Kang J, Goddard W A, et al. Density functional theory based neural network force fields from energy decompositions[J]. Physical Review B, 2019, 99(6): 064103.
[247] Liu Z, Yang X, Zhang B, et al. High Thermal Conductivity of Wurtzite Boron Arsenide Predicted by Including Four-Phonon Scattering with Machine Learning Potential[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 53409–53415.
[248] Mortazavi B, Podryabinkin E V, Novikov I S, et al. Accelerating first-principles estimation of thermal conductivity by machine-learning interatomic potentials: A MTP/ShengBTE solution[J]. Computer Physics Communications, 2021, 258: 107583.
[249] Martin J J. Thermal conductivity of Mg2Si, Mg2Ge and Mg2Sn [J]. Journal of Physics Chemical Solids 1972, 33, 1139-1148.
[250] Chernatynskiy A, Phillpot S R. Anharmonic properties in Mg2X (X=C, Si, Ge, Sn, Pb) from first-principles calculations[J]. Physical Review B, 2015, 92(6): 064303.
[251] Li W, Lindsay L, Broido D A, et al. Thermal conductivity of bulk and nanowire Mg2SixSn1-x alloys from first principles[J]. Physical Review B, 2012: 86(17): 174307.
[252] Shit S P, Ghosh N K, Pal S, et al. Particle size and temperature effects on thermal conductivity of aqueous Ag nanofluids: modelling and simulations using classical molecular dynamics[J]. The European Physical Journal D, 2022, 76(12): 238.
[253] McGaughey A J H, Kaviany M. Thermal conductivity decomposition and analysis using molecular dynamics simulations: Part II. Complex silica structures[J]. International Journal of Heat and Mass Transfer, 2004, 47(8): 1799–1816.
[254] Wang H, Chu W. Thermal conductivity of ZnTe investigated by molecular dynamics[J]. Journal of Alloys and Compounds, 2009, 485(1): 488–492.
修改评论