题名 | Discriminative subspace learning via optimization on Riemannian manifold |
作者 | |
通讯作者 | Liu,Quanying |
发表日期 | 2023-07-01
|
DOI | |
发表期刊 | |
ISSN | 0031-3203
|
EISSN | 1873-5142
|
卷号 | 139 |
摘要 | Discriminative subspace learning is an important problem in machine learning, which aims to find the maximum separable decision subspace. Traditional Euclidean-based methods usually use Fisher discriminant criterion for finding an optimal linear mapping from a high-dimensional data space to a lower-dimensional subspace, which hardly guarantee a quadratic rate of global convergence and suffers from the singularity problem. Here, we propose the manifold optimization-based discriminant analysis (MODA) which is constructed by using the latent subspace alignment and the geometry of objective function with orthogonality constraint. MODA is solved by using Riemannian version of trust-region algorithm. Experimental results on various image datasets and electroencephalogram (EEG) datasets show that MODA achieves the best separability and is significantly superior to the competing algorithms. Especially for the time series of EEG signals, the accuracy of MODA is 20–30% higher than existing algorithms. The code for MODA is available at https://github.com/ncclabsustech/MODA-algorithm. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[62001205]
; National Key R&D Program of China[2021YFF1200804]
; Shenzhen Science and Technology Innovation Committee["2020 09251559570 04","KCXFZ2020122117340001","JCYJ20220818100213029"]
; Shenzhen-Hong Kong-Macao Science and Technology Innovation Project[SGDX2020110309280100]
; Guangdong Provincial Key Laboratory of Advanced Biomaterials[2022B1212010003]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000954758500001
|
出版者 | |
EI入藏号 | 20231113704422
|
EI主题词 | Clustering algorithms
; Electroencephalography
; Geometry
; Learning algorithms
; Learning systems
|
EI分类号 | Medicine and Pharmacology:461.6
; Machine Learning:723.4.2
; Information Sources and Analysis:903.1
; Mathematics:921
; Statistical Methods:922
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85149684290
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:7
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/513351 |
专题 | 工学院_生物医学工程系 |
作者单位 | 1.Shenzhen Key Laboratory of Smart Healthcare Engineering,Department of Biomedical Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.School of Electronics and Information Technology,Sun Yat-sen University,Guangzhou,510006,China |
第一作者单位 | 生物医学工程系 |
通讯作者单位 | 生物医学工程系 |
第一作者的第一单位 | 生物医学工程系 |
推荐引用方式 GB/T 7714 |
Yin,Wanguang,Ma,Zhengming,Liu,Quanying. Discriminative subspace learning via optimization on Riemannian manifold[J]. PATTERN RECOGNITION,2023,139.
|
APA |
Yin,Wanguang,Ma,Zhengming,&Liu,Quanying.(2023).Discriminative subspace learning via optimization on Riemannian manifold.PATTERN RECOGNITION,139.
|
MLA |
Yin,Wanguang,et al."Discriminative subspace learning via optimization on Riemannian manifold".PATTERN RECOGNITION 139(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论