中文版 | English
题名

Discriminative subspace learning via optimization on Riemannian manifold

作者
通讯作者Liu,Quanying
发表日期
2023-07-01
DOI
发表期刊
ISSN
0031-3203
EISSN
1873-5142
卷号139
摘要
Discriminative subspace learning is an important problem in machine learning, which aims to find the maximum separable decision subspace. Traditional Euclidean-based methods usually use Fisher discriminant criterion for finding an optimal linear mapping from a high-dimensional data space to a lower-dimensional subspace, which hardly guarantee a quadratic rate of global convergence and suffers from the singularity problem. Here, we propose the manifold optimization-based discriminant analysis (MODA) which is constructed by using the latent subspace alignment and the geometry of objective function with orthogonality constraint. MODA is solved by using Riemannian version of trust-region algorithm. Experimental results on various image datasets and electroencephalogram (EEG) datasets show that MODA achieves the best separability and is significantly superior to the competing algorithms. Especially for the time series of EEG signals, the accuracy of MODA is 20–30% higher than existing algorithms. The code for MODA is available at https://github.com/ncclabsustech/MODA-algorithm.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[62001205] ; National Key R&D Program of China[2021YFF1200804] ; Shenzhen Science and Technology Innovation Committee["2020 09251559570 04","KCXFZ2020122117340001","JCYJ20220818100213029"] ; Shenzhen-Hong Kong-Macao Science and Technology Innovation Project[SGDX2020110309280100] ; Guangdong Provincial Key Laboratory of Advanced Biomaterials[2022B1212010003]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号
WOS:000954758500001
出版者
EI入藏号
20231113704422
EI主题词
Clustering algorithms ; Electroencephalography ; Geometry ; Learning algorithms ; Learning systems
EI分类号
Medicine and Pharmacology:461.6 ; Machine Learning:723.4.2 ; Information Sources and Analysis:903.1 ; Mathematics:921 ; Statistical Methods:922
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85149684290
来源库
Scopus
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/513351
专题工学院_生物医学工程系
作者单位
1.Shenzhen Key Laboratory of Smart Healthcare Engineering,Department of Biomedical Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.School of Electronics and Information Technology,Sun Yat-sen University,Guangzhou,510006,China
第一作者单位生物医学工程系
通讯作者单位生物医学工程系
第一作者的第一单位生物医学工程系
推荐引用方式
GB/T 7714
Yin,Wanguang,Ma,Zhengming,Liu,Quanying. Discriminative subspace learning via optimization on Riemannian manifold[J]. PATTERN RECOGNITION,2023,139.
APA
Yin,Wanguang,Ma,Zhengming,&Liu,Quanying.(2023).Discriminative subspace learning via optimization on Riemannian manifold.PATTERN RECOGNITION,139.
MLA
Yin,Wanguang,et al."Discriminative subspace learning via optimization on Riemannian manifold".PATTERN RECOGNITION 139(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yin,Wanguang]的文章
[Ma,Zhengming]的文章
[Liu,Quanying]的文章
百度学术
百度学术中相似的文章
[Yin,Wanguang]的文章
[Ma,Zhengming]的文章
[Liu,Quanying]的文章
必应学术
必应学术中相似的文章
[Yin,Wanguang]的文章
[Ma,Zhengming]的文章
[Liu,Quanying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。