中文版 | English
题名

Modeling and optimization of micro heat pipe cooling battery thermal management system via deep learning and multi-objective genetic algorithms

作者
通讯作者Zhao,Tianshou
发表日期
2023-06-15
DOI
发表期刊
ISSN
0017-9310
EISSN
1879-2189
卷号207
摘要
Battery thermal management and electrochemical performance are critical for efficient and safe operation of battery pack. In this research, a multi-physics model considering the battery aging effect is developed for micro heat pipe battery thermal management system (MHP-BTMS). A novel multi-variables global optimization framework combining multi-physics modeling, deep learning and multi-objective optimization algorithms is established for optimizing the structural parameters of MHP-BTMS to improve battery thermal management and electrochemical performance simultaneously. It is found that MHP-BTMS fails to control the temperature of aged battery pack due to the higher heat generation caused by solid electrolyte interphase formation. After 1000 cycles, the maximum temperature and maximum temperature difference were increased by 3.32 K, 2.49 K, 2.04 K and 1.78 K, 1.46 K, 1.26 K, respectively. It is also found that the battery electrochemical performance during the cycling is highly related to battery thermal behaviors. MHP-BTMS with 0.004/s inlet velocity achieved the best performance in preventing SEI formation and battery aging effect, which was lower by 7.01 nm (SEI) and 1.65% (aging), 2.31 nm and 0.58% as compared to 0.002 and 0.003 m/s cases. Besides, MHP-BTMS with optimized inlet velocity, MHP arrangement and cold plate can improve cooling performance and electrochemical performance. Multi-variables global optimization can provide the optimal structure parameters of MHP-BTMS under the different combinations of weighted coefficients and optimization strategies to achieve the trade-off between battery thermal issues and electrochemical performance. In addition, it is demonstrated that the weighted coefficients and optimization strategies in this novel framework can be changed according to the actual needs in engineering applications.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Research Grants Council, University Grants Committee, Hong Kong SAR[T23 -601/17-R]
WOS研究方向
Thermodynamics ; Engineering ; Mechanics
WOS类目
Thermodynamics ; Engineering, Mechanical ; Mechanics
WOS记录号
WOS:001090804800001
出版者
EI入藏号
20231013681426
EI主题词
Battery management systems ; Battery Pack ; Deep learning ; Economic and social effects ; Genetic algorithms ; Global optimization ; Heat pipes ; Heat transfer performance ; Learning algorithms ; Learning systems ; Multiobjective optimization ; Operating costs ; Solid electrolytes ; Structural optimization ; Temperature control ; Thermal management (electronics)
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Pipe, Piping and Pipelines:619.1 ; Heat Transfer:641.2 ; Secondary Batteries:702.1.2 ; Machine Learning:723.4.2 ; Specific Variables Control:731.3 ; Chemical Agents and Basic Industrial Chemicals:803 ; Cost Accounting:911.1 ; Industrial Economics:911.2 ; Optimization Techniques:921.5 ; Social Sciences:971
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85149378045
来源库
Scopus
引用统计
被引频次[WOS]:25
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/513356
专题工学院_机械与能源工程系
工学院
作者单位
1.Department of Building and Real Estate,Research Institute for Sustainable Urban Development (RISUD),Research Institute for Smart Energy (RISE),The Hong Kong Polytechnic University,Kowloon,Hung Hom, Hong Kong,China
2.Department of Mechanical and Energy Engineering,College of Engineering,Southern University of Science and Technology,Shenzhen,China
通讯作者单位机械与能源工程系;  工学院
推荐引用方式
GB/T 7714
Guo,Zengjia,Wang,Yang,Zhao,Siyuan,et al. Modeling and optimization of micro heat pipe cooling battery thermal management system via deep learning and multi-objective genetic algorithms[J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER,2023,207.
APA
Guo,Zengjia,Wang,Yang,Zhao,Siyuan,Zhao,Tianshou,&Ni,Meng.(2023).Modeling and optimization of micro heat pipe cooling battery thermal management system via deep learning and multi-objective genetic algorithms.INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER,207.
MLA
Guo,Zengjia,et al."Modeling and optimization of micro heat pipe cooling battery thermal management system via deep learning and multi-objective genetic algorithms".INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER 207(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Guo,Zengjia]的文章
[Wang,Yang]的文章
[Zhao,Siyuan]的文章
百度学术
百度学术中相似的文章
[Guo,Zengjia]的文章
[Wang,Yang]的文章
[Zhao,Siyuan]的文章
必应学术
必应学术中相似的文章
[Guo,Zengjia]的文章
[Wang,Yang]的文章
[Zhao,Siyuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。