中文版 | English
题名

Predicting Regional Wastewater Treatment Plant Discharges Using Machine Learning and Population Migration Big Data

作者
通讯作者Tian, Yong; Zheng, Chunmiao
发表日期
2023-03-01
DOI
发表期刊
EISSN
2690-0637
卷号3期号:5
摘要
Quantifying the temporal variation of wastewater treatment plant (WWTP) discharges is essential for water pollution control and environment protection in metropolitan areas. This study develops an ensemble machine learning (ML) model to predict discharges from WWTPs and to quantify the contribution of extraneous water (mixed precipitation and infiltrated groundwater) by leveraging the power of ML and population migration big data. The approach is applied to predict the discharges at 265 WWTPs in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. The major conclusions are as follows. First, the ensemble ML model provides an efficient and reliable way to predict WWTP discharges using data easily accessible to the public. The predicted treated sewage amount increased from 20.4 x 106 m3/day in 2015 to 24.5 x 106 m3/day in 2020. Second, the predictors, including daily precipitation, average precipitation of past proceeding days, daily temperature, and population migration, play different roles in predicting different city's discharges. Finally, mixed precipitation and infiltrated groundwater account for, on average, 1.6 and 10.3% of total discharges from WWTPs in the GBA. This study represents the first attempt to bring population migration big data into data-driven environmental engineering modeling and can be easily extended to predict other environmental variables of concern.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China["41890852","42071244"] ; Shenzhen Science and Technology Innovation Commission[20200925174525002]
WOS研究方向
Environmental Sciences & Ecology ; Water Resources
WOS类目
Environmental Sciences ; Water Resources
WOS记录号
WOS:000945432600001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:10
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/513390
专题工学院_环境科学与工程学院
作者单位
1.Peking Univ, Inst Water Sci, Coll Engn, Beijing 100871, Peoples R China
2.Southern Univ Sci & Technol, Sch Environm Sci & Engn, State Environm Protect Key Lab Integrated Surface, Shenzhen 518055, Peoples R China
3.Harbin Inst Technol, Sch Environm, Harbin 150001, Peoples R China
4.Shenzhen Acad Environm Sci, Shenzhen 518172, Peoples R China
5.Univ Hong Kong, Dept Civil Engn, Pok Fu Lam, Hong Kong 999077, Peoples R China
6.SS Papadopulos & Associates Inc, Rockville, MD 20852 USA
7.EIT Inst Adv Study, Ningbo 315200, Peoples R China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Yu, Jiang,Tian, Yong,Jing, Hao,et al. Predicting Regional Wastewater Treatment Plant Discharges Using Machine Learning and Population Migration Big Data[J]. ACS ES&T WATER,2023,3(5).
APA
Yu, Jiang.,Tian, Yong.,Jing, Hao.,Sun, Taotao.,Wang, Xiaoli.,...&Zheng, Chunmiao.(2023).Predicting Regional Wastewater Treatment Plant Discharges Using Machine Learning and Population Migration Big Data.ACS ES&T WATER,3(5).
MLA
Yu, Jiang,et al."Predicting Regional Wastewater Treatment Plant Discharges Using Machine Learning and Population Migration Big Data".ACS ES&T WATER 3.5(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yu, Jiang]的文章
[Tian, Yong]的文章
[Jing, Hao]的文章
百度学术
百度学术中相似的文章
[Yu, Jiang]的文章
[Tian, Yong]的文章
[Jing, Hao]的文章
必应学术
必应学术中相似的文章
[Yu, Jiang]的文章
[Tian, Yong]的文章
[Jing, Hao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。