题名 | Predicting Regional Wastewater Treatment Plant Discharges Using Machine Learning and Population Migration Big Data |
作者 | |
通讯作者 | Tian, Yong; Zheng, Chunmiao |
发表日期 | 2023-03-01
|
DOI | |
发表期刊 | |
EISSN | 2690-0637
|
卷号 | 3期号:5 |
摘要 | Quantifying the temporal variation of wastewater treatment plant (WWTP) discharges is essential for water pollution control and environment protection in metropolitan areas. This study develops an ensemble machine learning (ML) model to predict discharges from WWTPs and to quantify the contribution of extraneous water (mixed precipitation and infiltrated groundwater) by leveraging the power of ML and population migration big data. The approach is applied to predict the discharges at 265 WWTPs in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. The major conclusions are as follows. First, the ensemble ML model provides an efficient and reliable way to predict WWTP discharges using data easily accessible to the public. The predicted treated sewage amount increased from 20.4 x 106 m3/day in 2015 to 24.5 x 106 m3/day in 2020. Second, the predictors, including daily precipitation, average precipitation of past proceeding days, daily temperature, and population migration, play different roles in predicting different city's discharges. Finally, mixed precipitation and infiltrated groundwater account for, on average, 1.6 and 10.3% of total discharges from WWTPs in the GBA. This study represents the first attempt to bring population migration big data into data-driven environmental engineering modeling and can be easily extended to predict other environmental variables of concern. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Natural Science Foundation of China["41890852","42071244"]
; Shenzhen Science and Technology Innovation Commission[20200925174525002]
|
WOS研究方向 | Environmental Sciences & Ecology
; Water Resources
|
WOS类目 | Environmental Sciences
; Water Resources
|
WOS记录号 | WOS:000945432600001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:10
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/513390 |
专题 | 工学院_环境科学与工程学院 |
作者单位 | 1.Peking Univ, Inst Water Sci, Coll Engn, Beijing 100871, Peoples R China 2.Southern Univ Sci & Technol, Sch Environm Sci & Engn, State Environm Protect Key Lab Integrated Surface, Shenzhen 518055, Peoples R China 3.Harbin Inst Technol, Sch Environm, Harbin 150001, Peoples R China 4.Shenzhen Acad Environm Sci, Shenzhen 518172, Peoples R China 5.Univ Hong Kong, Dept Civil Engn, Pok Fu Lam, Hong Kong 999077, Peoples R China 6.SS Papadopulos & Associates Inc, Rockville, MD 20852 USA 7.EIT Inst Adv Study, Ningbo 315200, Peoples R China |
第一作者单位 | 环境科学与工程学院 |
通讯作者单位 | 环境科学与工程学院 |
推荐引用方式 GB/T 7714 |
Yu, Jiang,Tian, Yong,Jing, Hao,et al. Predicting Regional Wastewater Treatment Plant Discharges Using Machine Learning and Population Migration Big Data[J]. ACS ES&T WATER,2023,3(5).
|
APA |
Yu, Jiang.,Tian, Yong.,Jing, Hao.,Sun, Taotao.,Wang, Xiaoli.,...&Zheng, Chunmiao.(2023).Predicting Regional Wastewater Treatment Plant Discharges Using Machine Learning and Population Migration Big Data.ACS ES&T WATER,3(5).
|
MLA |
Yu, Jiang,et al."Predicting Regional Wastewater Treatment Plant Discharges Using Machine Learning and Population Migration Big Data".ACS ES&T WATER 3.5(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论