中文版 | English
题名

基于深度学习的空间尘埃碰撞实时自动检测

其他题名
Real-time automatic detection of signals triggered by space dust's impact based on deep learning
作者
通讯作者Ye ShengYi
发表日期
2023-02-01
DOI
发表期刊
ISSN
0001-5733
卷号66期号:2
摘要

Accurate and rapid detection of dust impact events on spacecraft can help us better understand the dust distribution in the space and reduce the damage to spacecraft due to dust impacts. Although the existing methods of manual identification or machine identification of dust impact events based on the waveform characteristics of potential difference signals caused by dust impacts have high accuracy, their efficiency is low, and high-precision and automated methods are urgently needed to identify the massive potential difference signals collected by spacecraft. The deep learning model has strong ability in signal classification and recognition. In this paper, the problem of potential difference signals caused by dust impacts detection is modeled as a signal classification problem, and a convolutional neural network model is constructed, which can automatically extract signal features and classify signals according to the features. At the same time, in order to train the model and test the prediction accuracy of the model, a data set composed of potential difference signals caused by dust impacts and potential difference signals caused by other events was constructed. The accuracy rate of the model on training set is 99.46% and on the test set is 98. 68%, the recall rate is 99.44%, the precision rate is 97.95%, and the threat score is 97.41%, High-precision and automatic dust collision events detection is realized.

关键词
相关链接[来源记录]
收录类别
语种
中文
学校署名
第一 ; 通讯
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:000934497300003
出版者
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/513393
专题理学院_地球与空间科学系
作者单位
Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen 518055, Peoples R China
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Liu RunYi,Zhu Feng,Wang Jian,等. 基于深度学习的空间尘埃碰撞实时自动检测[J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION,2023,66(2).
APA
Liu RunYi,Zhu Feng,Wang Jian,&Ye ShengYi.(2023).基于深度学习的空间尘埃碰撞实时自动检测.CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION,66(2).
MLA
Liu RunYi,et al."基于深度学习的空间尘埃碰撞实时自动检测".CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION 66.2(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu RunYi]的文章
[Zhu Feng]的文章
[Wang Jian]的文章
百度学术
百度学术中相似的文章
[Liu RunYi]的文章
[Zhu Feng]的文章
[Wang Jian]的文章
必应学术
必应学术中相似的文章
[Liu RunYi]的文章
[Zhu Feng]的文章
[Wang Jian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。