中文版 | English
题名

bvnGPS: a generalizable diagnostic model for acute bacterial and viral infection using integrative host transcriptomics and pretrained neural networks

作者
通讯作者Geng, Qingshan; Cheng, Lixin
发表日期
2023-03-01
DOI
发表期刊
ISSN
1367-4803
EISSN
1367-4811
卷号39期号:3
摘要
Motivation The confusion of acute inflammation infected by virus and bacteria or noninfectious inflammation will lead to missing the best therapy occasion resulting in poor prognoses. The diagnostic model based on host gene expression has been widely used to diagnose acute infections, but the clinical usage was hindered by the capability across different samples and cohorts due to the small sample size for signature training and discovery.Results Here, we construct a large-scale dataset integrating multiple host transcriptomic data and analyze it using a sophisticated strategy which removes batch effect and extracts the common information from different cohorts based on the relative expression alteration of gene pairs. We assemble 2680 samples across 16 cohorts and separately build gene pair signature (GPS) for bacterial, viral, and noninfected patients. The three GPSs are further assembled into an antibiotic decision model (bacterial-viral-noninfected GPS, bvnGPS) using multiclass neural networks, which is able to determine whether a patient is bacterial infected, viral infected, or noninfected. bvnGPS can distinguish bacterial infection with area under the receiver operating characteristic curve (AUC) of 0.953 (95% confidence interval, 0.948-0.958) and viral infection with AUC of 0.956 (0.951-0.961) in the test set (N = 760). In the validation set (N = 147), bvnGPS also shows strong performance by attaining an AUC of 0.988 (0.978-0.998) on bacterial-versus-other and an AUC of 0.994 (0.984-1.000) on viral-versus-other. bvnGPS has the potential to be used in clinical practice and the proposed procedure provides insight into data integration, feature selection and multiclass classification for host transcriptomics data.
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
Shenzhen Science and Technology Program[JCYJ20220530152409020] ; National Key R&D Program of China[2018YFC2001805]
WOS研究方向
Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Computer Science ; Mathematical & Computational Biology ; Mathematics
WOS类目
Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Statistics & Probability
WOS记录号
WOS:000946431300005
出版者
ESI学科分类
BIOLOGY & BIOCHEMISTRY
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/513414
专题南方科技大学第一附属医院
作者单位
1.Southern Univ Sci & Technol, Clin Med Coll 2, Shenzhen Peoples Hosp, Affiliated Hosp 1,Jinan Univ, Shenzhen 518020, Peoples R China
2.Shanghai Jiao Tong Univ, John Hopcroft Ctr Comp Sci, Shanghai, Peoples R China
3.Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China
4.Great Bay Univ, Dongguan, Peoples R China
5.Hong Kong Shue Yan Univ, Dept Appl Data Sci, North Point, Hong Kong, Peoples R China
第一作者单位南方科技大学第一附属医院
通讯作者单位南方科技大学第一附属医院
第一作者的第一单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Li, Qizhi,Zheng, Xubin,Xie, Jize,et al. bvnGPS: a generalizable diagnostic model for acute bacterial and viral infection using integrative host transcriptomics and pretrained neural networks[J]. BIOINFORMATICS,2023,39(3).
APA
Li, Qizhi.,Zheng, Xubin.,Xie, Jize.,Wang, Ran.,Li, Mengyao.,...&Cheng, Lixin.(2023).bvnGPS: a generalizable diagnostic model for acute bacterial and viral infection using integrative host transcriptomics and pretrained neural networks.BIOINFORMATICS,39(3).
MLA
Li, Qizhi,et al."bvnGPS: a generalizable diagnostic model for acute bacterial and viral infection using integrative host transcriptomics and pretrained neural networks".BIOINFORMATICS 39.3(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Qizhi]的文章
[Zheng, Xubin]的文章
[Xie, Jize]的文章
百度学术
百度学术中相似的文章
[Li, Qizhi]的文章
[Zheng, Xubin]的文章
[Xie, Jize]的文章
必应学术
必应学术中相似的文章
[Li, Qizhi]的文章
[Zheng, Xubin]的文章
[Xie, Jize]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。