题名 | bvnGPS: a generalizable diagnostic model for acute bacterial and viral infection using integrative host transcriptomics and pretrained neural networks |
作者 | |
通讯作者 | Geng, Qingshan; Cheng, Lixin |
发表日期 | 2023-03-01
|
DOI | |
发表期刊 | |
ISSN | 1367-4803
|
EISSN | 1367-4811
|
卷号 | 39期号:3 |
摘要 | Motivation The confusion of acute inflammation infected by virus and bacteria or noninfectious inflammation will lead to missing the best therapy occasion resulting in poor prognoses. The diagnostic model based on host gene expression has been widely used to diagnose acute infections, but the clinical usage was hindered by the capability across different samples and cohorts due to the small sample size for signature training and discovery.Results Here, we construct a large-scale dataset integrating multiple host transcriptomic data and analyze it using a sophisticated strategy which removes batch effect and extracts the common information from different cohorts based on the relative expression alteration of gene pairs. We assemble 2680 samples across 16 cohorts and separately build gene pair signature (GPS) for bacterial, viral, and noninfected patients. The three GPSs are further assembled into an antibiotic decision model (bacterial-viral-noninfected GPS, bvnGPS) using multiclass neural networks, which is able to determine whether a patient is bacterial infected, viral infected, or noninfected. bvnGPS can distinguish bacterial infection with area under the receiver operating characteristic curve (AUC) of 0.953 (95% confidence interval, 0.948-0.958) and viral infection with AUC of 0.956 (0.951-0.961) in the test set (N = 760). In the validation set (N = 147), bvnGPS also shows strong performance by attaining an AUC of 0.988 (0.978-0.998) on bacterial-versus-other and an AUC of 0.994 (0.984-1.000) on viral-versus-other. bvnGPS has the potential to be used in clinical practice and the proposed procedure provides insight into data integration, feature selection and multiclass classification for host transcriptomics data. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Shenzhen Science and Technology Program[JCYJ20220530152409020]
; National Key R&D Program of China[2018YFC2001805]
|
WOS研究方向 | Biochemistry & Molecular Biology
; Biotechnology & Applied Microbiology
; Computer Science
; Mathematical & Computational Biology
; Mathematics
|
WOS类目 | Biochemical Research Methods
; Biotechnology & Applied Microbiology
; Computer Science, Interdisciplinary Applications
; Mathematical & Computational Biology
; Statistics & Probability
|
WOS记录号 | WOS:000946431300005
|
出版者 | |
ESI学科分类 | BIOLOGY & BIOCHEMISTRY
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/513414 |
专题 | 南方科技大学第一附属医院 |
作者单位 | 1.Southern Univ Sci & Technol, Clin Med Coll 2, Shenzhen Peoples Hosp, Affiliated Hosp 1,Jinan Univ, Shenzhen 518020, Peoples R China 2.Shanghai Jiao Tong Univ, John Hopcroft Ctr Comp Sci, Shanghai, Peoples R China 3.Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China 4.Great Bay Univ, Dongguan, Peoples R China 5.Hong Kong Shue Yan Univ, Dept Appl Data Sci, North Point, Hong Kong, Peoples R China |
第一作者单位 | 南方科技大学第一附属医院 |
通讯作者单位 | 南方科技大学第一附属医院 |
第一作者的第一单位 | 南方科技大学第一附属医院 |
推荐引用方式 GB/T 7714 |
Li, Qizhi,Zheng, Xubin,Xie, Jize,et al. bvnGPS: a generalizable diagnostic model for acute bacterial and viral infection using integrative host transcriptomics and pretrained neural networks[J]. BIOINFORMATICS,2023,39(3).
|
APA |
Li, Qizhi.,Zheng, Xubin.,Xie, Jize.,Wang, Ran.,Li, Mengyao.,...&Cheng, Lixin.(2023).bvnGPS: a generalizable diagnostic model for acute bacterial and viral infection using integrative host transcriptomics and pretrained neural networks.BIOINFORMATICS,39(3).
|
MLA |
Li, Qizhi,et al."bvnGPS: a generalizable diagnostic model for acute bacterial and viral infection using integrative host transcriptomics and pretrained neural networks".BIOINFORMATICS 39.3(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论