中文版 | English
题名

Complementary surrogate-assisted differential evolution algorithm for expensive multi-objective problems under a limited computational budget

作者
通讯作者Yuan,Bo
发表日期
2023-06-01
DOI
发表期刊
ISSN
0020-0255
EISSN
1872-6291
卷号632页码:791-814
摘要
Different surrogate-assisted strategies can greatly influence the optimization efficiency of surrogate-assisted multi-objective evolutionary algorithms. By hybridizing two complementary surrogate-assisted strategies, this study proposed an efficient surrogate-assisted differential evolution algorithm to optimize expensive multi-objective problems under a limited computational budget. The two proposed surrogate-assisted strategies balance global and local search for multi-objective optimization. Specifically, one strategy is an improved surrogate-based multi-objective local search method that is based on maximin angle-distance sequential sampling. Compared with the previous local search method that is based on Euclidian distance-based sampling, the improved local search method is more efficient because it can mitigate the scale difference of different objectives. The other surrogate-assisted strategy is prescreening based on a diversity-enhanced expected improvement matrix infill criterion. The proposed infill criterion aims to improve the diversity of approximate Pareto optimal solutions by considering distribution of candidate individuals in the objective space in the infill function. Within a limited computational burden, the performance of the proposed algorithm is demonstrated on a large set of multi-objective benchmark problems, as well as a real-world airfoil design problem. Experimental results show that the proposed algorithm performs significantly better than some existing algorithms on most problems investigated in this study.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China["51805180","61976111","62250710682"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems
WOS记录号
WOS:000952067600001
出版者
EI入藏号
20231213745731
EI主题词
Benchmarking ; Budget control ; Computational efficiency ; Evolutionary algorithms ; Infill drilling ; Local search (optimization) ; Pareto principle
EI分类号
Oil Field Production Operations:511.1 ; Optimization Techniques:921.5
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85150052677
来源库
Scopus
引用统计
被引频次[WOS]:8
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/515720
专题工学院_计算机科学与工程系
作者单位
1.Mechanical and Electrical Engineering College,Guangzhou University,Guangzhou,510006,China
2.School of Computer Science,University of Birmingham,Edgbaston Birmingham,B15 2TT,United Kingdom
3.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
4.The State Key Laboratory of Digital Manufacturing Equipment and Technology,School of Mechanical Science and Engineering,Huazhong University of Science and Technology,Wuhan,430074,China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Cai,Xiwen,Ruan,Gan,Yuan,Bo,et al. Complementary surrogate-assisted differential evolution algorithm for expensive multi-objective problems under a limited computational budget[J]. INFORMATION SCIENCES,2023,632:791-814.
APA
Cai,Xiwen,Ruan,Gan,Yuan,Bo,&Gao,Liang.(2023).Complementary surrogate-assisted differential evolution algorithm for expensive multi-objective problems under a limited computational budget.INFORMATION SCIENCES,632,791-814.
MLA
Cai,Xiwen,et al."Complementary surrogate-assisted differential evolution algorithm for expensive multi-objective problems under a limited computational budget".INFORMATION SCIENCES 632(2023):791-814.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cai,Xiwen]的文章
[Ruan,Gan]的文章
[Yuan,Bo]的文章
百度学术
百度学术中相似的文章
[Cai,Xiwen]的文章
[Ruan,Gan]的文章
[Yuan,Bo]的文章
必应学术
必应学术中相似的文章
[Cai,Xiwen]的文章
[Ruan,Gan]的文章
[Yuan,Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。