中文版 | English
题名

Online trajectory prediction for metropolitan scale mobility digital twin

作者
DOI
发表日期
2022-11-01
会议名称
30th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL GIS 2022
ISBN
9781450395298
会议录名称
会议日期
November 1, 2022 - November 4, 2022
会议地点
Seattle, WA, United states
会议录编者/会议主办者
Apple; Esri; Google; Oracle; Wherobots
出版者
摘要
Knowing "what is happening"and "what will happen"of the mobility in a city is the building block of a data-driven smart city system. In recent years, mobility digital twin that makes a virtual replication of human mobility and predicting or simulating the fine-grained movements of the subjects in a virtual space at a metropolitan scale in near real-time has shown its great potential in modern urban intelligent systems. However, few studies have provided practical solutions. The main difficulties are four-folds: 1) the daily variation of human mobility is hard to model and predict; 2) the transportation network enforces a complex constraints on human mobility; 3) generating a rational fine-grained human trajectory is challenging for existing machine learning models; and 4) making a fine-grained prediction incurs high computational costs, which is challenging for an online system. Bearing these difficulties in mind, in this paper we propose a two-stage human mobility predictor that stratifies the coarse and fine-grained level predictions. In the first stage, to encode the daily variation of human mobility at a metropolitan level, we automatically extract citywide mobility trends as crowd contexts and predict long-term and long-distance movements at a coarse level. In the second stage, the coarse predictions are resolved to a fine-grained level via a probabilistic trajectory retrieval method, which offloads most of the heavy computations to the offline phase. We tested our method using a real-world mobile phone GPS dataset in the Kanto area in Japan, and achieved good prediction accuracy and a time efficiency of about 2 min in predicting future 1h movements of about 220K mobile phone users on a single machine to support more higher-level analysis of mobility prediction.
© 2022 ACM.
学校署名
其他
语种
英语
收录类别
资助项目
This work was partially supported by Grant-in-Aid for Young Scientists (20K19782) and Grant in-Aid for Scientific Research B (22H03573) of Japan’s Ministry of Education, Culture, Sports, Science, and Technology (MEXT).
EI入藏号
20225013234681
EI主题词
Cellular telephones ; Forecasting ; Intelligent systems ; Online systems ; Real time systems ; Scheduling algorithms ; Smart city ; Transportation routes ; Urban transportation ; Virtual reality
EI分类号
Highway Transportation:432 ; Railroad Transportation:433 ; Telephone Systems and Equipment:718.1 ; Digital Computers and Systems:722.4 ; Computer Software, Data Handling and Applications:723 ; Artificial Intelligence:723.4
来源库
EV Compendex
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/519698
专题南方科技大学
作者单位
1.Center for Spatial Information Science, University of Tokyo, Chiba, Kashiwa, Japan
2.SUSTech-UTokyo Joint Research Center on Super Smart City, Southern University of Science and Technology, Guangdong, Shenzhen, China
推荐引用方式
GB/T 7714
Fan, Zipei,Yang, Xiaojie,Yuan, Wei,et al. Online trajectory prediction for metropolitan scale mobility digital twin[C]//Apple; Esri; Google; Oracle; Wherobots:Association for Computing Machinery,2022.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fan, Zipei]的文章
[Yang, Xiaojie]的文章
[Yuan, Wei]的文章
百度学术
百度学术中相似的文章
[Fan, Zipei]的文章
[Yang, Xiaojie]的文章
[Yuan, Wei]的文章
必应学术
必应学术中相似的文章
[Fan, Zipei]的文章
[Yang, Xiaojie]的文章
[Yuan, Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。