中文版 | English
题名

Joint 3D inversion of gravity and magnetic data using deep learning neural networks

作者
通讯作者Wei, Nanyu
DOI
发表日期
2022-08-15
会议名称
2nd International Meeting for Applied Geoscience and Energy, IMAGE 2022
ISSN
1052-3812
EISSN
1949-4645
会议录名称
卷号
2022-August
页码
1457-1461
会议日期
August 28, 2022 - September 1, 2022
会议地点
Houston, TX, United states
出版者
摘要
Three-dimensional (3D) joint inversion of geophysical data is often non-unique, non-linear on a large scale, and is complicated for most conventional model-driven approaches that use additional regularization terms in the objective function. In recent years, with the development of computing devices and artificial intelligence, processing large-scale data using data-driven methods is no longer difficult, and great progress has been made in the inversion of single geophysical dataset using the deep learning. In this work, we explore the feasibility of using deep learning methods for 3D joint inversion. In particular, we propose two methods based on modified U-Net architectures: (1) early fusion that constructs a single network and requires different types of data to be preprocessed to share the same size; (2) late fusion that employs multiple branches of network designed for different types of data, but feature-fused together before the final loss is calculated. Our synthetic examples focus on the joint 3D inversion of gravity and magnetic inversion for mineral exploration; the model is parameterized by an ore body represented by an ellipsoid with an arbitrary size, position and orientation in the 3D space. We have found that the performance of the early fusion mostly relies on the data preprocessing, but the early fusion has obvious advantages in its simplicity and efficiency; the late fusion is a more stable choice and highly flexible in cases where data are in different sizes. Our results have proven the feasibility and the basic workflow of 3D joint inversion using the deep learning methods.
© 2022 Society of Exploration Geophysicists and the American Association of Petroleum Geologists.
学校署名
第一 ; 通讯
语种
英语
收录类别
资助项目
This work was supported by National Key R&D Program of China under grant no. 2018YFC0603305 and the BGP, CNPC Scientific Research Program.
EI入藏号
20230413445790
EI主题词
Data handling ; Deep neural networks ; Geophysical prospecting ; Geophysics ; Large dataset ; Mineral exploration ; Ore deposits ; Ores
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Geophysics:481.3 ; Geophysical Prospecting:481.4 ; Exploration and Prospecting Methods:501.1 ; Data Processing and Image Processing:723.2 ; Gravitation, Relativity and String Theory:931.5
来源库
EV Compendex
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/519712
专题理学院_地球与空间科学系
作者单位
1.Department of Earth and Space Sciences, Southern University of Science and Technology, China
2.BGP Inc., CNPC
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Wei, Nanyu,Yang, Dikun,Wang, Zhigang,et al. Joint 3D inversion of gravity and magnetic data using deep learning neural networks[C]:Society of Exploration Geophysicists,2022:1457-1461.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wei, Nanyu]的文章
[Yang, Dikun]的文章
[Wang, Zhigang]的文章
百度学术
百度学术中相似的文章
[Wei, Nanyu]的文章
[Yang, Dikun]的文章
[Wang, Zhigang]的文章
必应学术
必应学术中相似的文章
[Wei, Nanyu]的文章
[Yang, Dikun]的文章
[Wang, Zhigang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。