题名 | Exploring intercity regional similarity using worldwide location-based social network data (demo paper) |
作者 | |
DOI | |
发表日期 | 2022-11-01
|
会议名称 | 30th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL GIS 2022
|
ISBN | 9781450395298
|
会议录名称 | |
会议日期 | November 1, 2022 - November 4, 2022
|
会议地点 | Seattle, WA, United states
|
会议录编者/会议主办者 | Apple; Esri; Google; Oracle; Wherobots
|
出版者 | |
摘要 | Finding out similar regions between cities is important to a variety of real-world applications, such as point-of-interest recommendations, site selection, and travel guidance. With the help of the increasing number of location-based social network users, we can measure the intercity similarity from a new perspective of spatiotemporal characteristics of human mobility. In this paper, we developed an interactive intercity regional similarity explorer (IRSE) that 1) visualizes regional spatiotemporal human mobility features, 2) searches similar region candidates in the target city, and 3) explores the regional similarity from different views in a quantitative and illustrative way. In this paper, we show how our system can be useful in exploring regional similarity across cities in the world by use cases, which will interest various users from different countries in the demonstration session. Demo available at: https://bit.ly/3OjwnGu © 2022 Owner/Author. |
学校署名 | 其他
|
语种 | 英语
|
收录类别 | |
EI入藏号 | 20225013234682
|
EI主题词 | Data visualization
; Geographic information systems
; Location
; Search engines
|
EI分类号 | Computer Software, Data Handling and Applications:723
; Data Processing and Image Processing:723.2
; Computer Applications:723.5
; Information Retrieval and Use:903.3
|
来源库 | EV Compendex
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/519714 |
专题 | 南方科技大学 |
作者单位 | 1.University of Tokyo, Chiba, Kashiwa, Japan 2.Waseda University, Tokyo, Japan 3.Southern University of Science and Technology, Shenzhen, China |
推荐引用方式 GB/T 7714 |
Fan, Zipei,Lin, Guixu,Yuan, Wei,et al. Exploring intercity regional similarity using worldwide location-based social network data (demo paper)[C]//Apple; Esri; Google; Oracle; Wherobots:Association for Computing Machinery,2022.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论