中文版 | English
题名

An efficient Bayesian network structure learning algorithm based on structural information

作者
通讯作者Fang, Wei
发表日期
2023-02
DOI
发表期刊
ISSN
2210-6502
EISSN
2210-6510
卷号76
摘要
Bayesian networks (BNs) are probabilistic graphical models regarded as some of the most compelling theoretical models in the field of representation and reasoning under uncertainty. The search space of the model structure grows super-exponentially as the number of variables increases, which makes BN structure learning an NP-hard problem. Evolutionary algorithm-based BN structure learning algorithms perform better than traditional methods. This paper proposes a structural information-based genetic algorithm for BN structure learning (SIGA-BN) by employing the concepts of Markov blankets (MBs) and v-structures in BNs. In SIGA-BN, an elite learning strategy based on an MB is designed, allowing elite individuals’ structural information to be learned more effectively and improving the convergence speed with high accuracy. Then, a v-structure-based adaptive preference mutation operator is introduced in SIGA-BN to reduce the redundancy of the search process by identifying changes in the v-structure. Furthermore, an adaptive mutation probability mechanism based on stagnation iterations is adopted and used to balance exploration and exploitation. Experimental results on eight widely used benchmark networks show that the proposed algorithm outperforms other GA-based and traditional BN structure learning algorithms regarding structural accuracy, convergence speed, and computational time.
© 2022 Elsevier B.V.
关键词
相关链接[来源记录]
收录类别
EI ; SCI
语种
英语
学校署名
其他
资助项目
This work was supported in part by the National Natural Science foundation of China under Grant 62073155 , 62002137 , 62106088 , and 62206113 , in part by "Blue Project" in Jiangsu Universities, China , in part by Innovative Research Foundation of Ship General Performance, China under Grant 22422213 , in part by Guangdong Provincial Key Laboratory, China under Grant 2020B121201001 .
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000899458400006
出版者
EI入藏号
20230113335930
EI主题词
Bayesian networks ; Computational complexity ; Learning algorithms
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Machine Learning:723.4.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
来源库
EV Compendex
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/519739
专题南方科技大学
作者单位
1.International Joint Laboratory on Artificial Intelligence of Jiangsu Province, Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, Jiangnan University, Jiangsu, Wuxi, China
2.Computer Science and Engineering Department, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Fang, Wei,Zhang, Weijian,Ma, Li,et al. An efficient Bayesian network structure learning algorithm based on structural information[J]. Swarm and Evolutionary Computation,2023,76.
APA
Fang, Wei.,Zhang, Weijian.,Ma, Li.,Wu, Yunlin.,Yan, Kefei.,...&Yuan, Bo.(2023).An efficient Bayesian network structure learning algorithm based on structural information.Swarm and Evolutionary Computation,76.
MLA
Fang, Wei,et al."An efficient Bayesian network structure learning algorithm based on structural information".Swarm and Evolutionary Computation 76(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fang, Wei]的文章
[Zhang, Weijian]的文章
[Ma, Li]的文章
百度学术
百度学术中相似的文章
[Fang, Wei]的文章
[Zhang, Weijian]的文章
[Ma, Li]的文章
必应学术
必应学术中相似的文章
[Fang, Wei]的文章
[Zhang, Weijian]的文章
[Ma, Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。