中文版 | English
题名

Multi-objective Evolutionary Instance Selection for Multi-label Classification

作者
通讯作者Qian, Chao
DOI
发表日期
2022
会议名称
19th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2022
ISSN
0302-9743
EISSN
1611-3349
ISBN
9783031208614
会议录名称
卷号
13629 LNCS
页码
548-561
会议日期
November 10, 2022 - November 13, 2022
会议地点
Shangai, China
出版者
摘要
Multi-label classification is an important topic in machine learning, where each instance can be classified into more than one category, i.e., have a subset of labels instead of only one. Among existing methods, ML-kNN [25], the direct extension of k-nearest neighbors algorithm to the multi-label scenario, has received much attention due to its conciseness, great interpretability, and good performance. However, ML-kNN usually suffers from a terrible storage cost since all training instances need to be saved in the memory. To address this issue, a natural way is instance selection, intending to save the important instances while deleting the redundant ones. However, previous instance selection methods mainly focus on the single-label scenario, which may have a poor performance when adapted to the multi-label scenario. Recently, few works begin to consider the multi-label scenario, but their performance is limited due to the inapposite modeling. In this paper, we propose to formulate the instance selection problem for ML-kNN as a natural bi-objective optimization problem that considers the accuracy and the number of retained instances simultaneously, and adapt NSGA-II to solve it. Experiments on six real-world data sets show that our proposed method can achieve both not worse prediction accuracy and significantly better compression ratio, compared with state-of-the-art methods.
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
学校署名
其他
语种
英语
收录类别
资助项目
by the National Science Foundation of China
WOS记录号
WOS:000897031800040
EI入藏号
20225213294976
EI主题词
Classification (of information) ; Digital storage ; Evolutionary algorithms ; Learning algorithms ; Nearest neighbor search
EI分类号
Information Theory and Signal Processing:716.1 ; Data Storage, Equipment and Techniques:722.1 ; Machine Learning:723.4.2 ; Information Sources and Analysis:903.1 ; Optimization Techniques:921.5
来源库
EV Compendex
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/519748
专题工学院_计算机科学与工程系
作者单位
1.State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing; 210023, China
2.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China
推荐引用方式
GB/T 7714
Liu, Dingming,Shang, Haopu,Hong, Wenjing,et al. Multi-objective Evolutionary Instance Selection for Multi-label Classification[C]:Springer Science and Business Media Deutschland GmbH,2022:548-561.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Dingming]的文章
[Shang, Haopu]的文章
[Hong, Wenjing]的文章
百度学术
百度学术中相似的文章
[Liu, Dingming]的文章
[Shang, Haopu]的文章
[Hong, Wenjing]的文章
必应学术
必应学术中相似的文章
[Liu, Dingming]的文章
[Shang, Haopu]的文章
[Hong, Wenjing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。