中文版 | English
题名

DSP: Efficient GNN Training with Multiple GPUs

作者
通讯作者Yan, Xiao
DOI
发表日期
2023-02-25
会议名称
28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming, PPoPP 2023
ISBN
9798400700156
会议录名称
页码
392-404
会议日期
February 25, 2023 - March 1, 2023
会议地点
Montreal, QC, Canada
会议录编者/会议主办者
ACM SIGHPC; ACM SIGPLAN; HUAWEI
出版者
摘要
Jointly utilizing multiple GPUs to train graph neural networks (GNNs) is crucial for handling large graphs and achieving high efficiency. However, we find that existing systems suffer from high communication costs and low GPU utilization due to improper data layout and training procedures. Thus, we propose a system dubbed Distributed Sampling and Pipelining (DSP) for multi-GPU GNN training. DSP adopts a tailored data layout to utilize the fast NVLink connections among the GPUs, which stores the graph topology and popular node features in GPU memory. For efficient graph sampling with multiple GPUs, we introduce a collective sampling primitive (CSP), which pushes the sampling tasks to data to reduce communication. We also design a producer-consumer-based pipeline, which allows tasks from different mini-batches to run congruently to improve GPU utilization. We compare DSP with state-of-the-art GNN training frameworks, and the results show that DSP consistently outperforms the baselines under different datasets, GNN models and GPU counts. The speedup of DSP can be up to 26x and is over 2x in most cases.
© 2023 ACM.
学校署名
通讯
语种
英语
收录类别
EI入藏号
20231013675700
EI主题词
Deep learning ; Digital signal processing ; Graph neural networks ; Program processors ; Topology
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Semiconductor Devices and Integrated Circuits:714.2 ; Computer Circuits:721.3 ; Artificial Intelligence:723.4 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
来源库
EV Compendex
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/519763
专题工学院_计算机科学与工程系
作者单位
1.Department of Comptuer Sicence and Engineering, The Chinese University of Hong Kong, Hong Kong
2.Department of Computer Science and Engineering, Southern University of Science and Technology, China
3.Amazon Web Services
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Cai, Zhenkun,Zhou, Qihui,Yan, Xiao,et al. DSP: Efficient GNN Training with Multiple GPUs[C]//ACM SIGHPC; ACM SIGPLAN; HUAWEI:Association for Computing Machinery,2023:392-404.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cai, Zhenkun]的文章
[Zhou, Qihui]的文章
[Yan, Xiao]的文章
百度学术
百度学术中相似的文章
[Cai, Zhenkun]的文章
[Zhou, Qihui]的文章
[Yan, Xiao]的文章
必应学术
必应学术中相似的文章
[Cai, Zhenkun]的文章
[Zhou, Qihui]的文章
[Yan, Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。