中文版 | English
题名

A C 0interior penalty method for m th-Laplace equation

作者
通讯作者Qiu, Weifeng
发表日期
2022-11-01
DOI
发表期刊
ISSN
2822-7840
EISSN
2804-7214
卷号56页码:2081-2103
摘要
In this paper, we propose a C0 interior penalty method for mth-Laplace equation on bounded Lipschitz polyhedral domain in Rd, where m and d can be any positive integers. The standard H1-conforming piecewise r-th order polynomial space is used to approximate the exact solution u, where r can be any integer greater than or equal to m. Unlike the interior penalty method in Gudi and Neilan [IMA J. Numer. Anal. 31 (2011) 1734- 1753], we avoid computing Dm of numerical solution on each element and high order normal derivatives of numerical solution along mesh interfaces. Therefore our method can be easily implemented. After proving discrete Hm-norm bounded by the natural energy semi-norm associated with our method, we manage to obtain stability and optimal convergence with respect to discrete Hm-norm. The error estimate under the low regularity assumption of the exact solution is also obtained. Numerical experiments validate our theoretical estimate.
© The authors. Published by EDP Sciences, SMAI 2022.
收录类别
EI ; SCI
语种
英语
学校署名
其他
资助项目
The work of Huangxin Chen is supported by the NSF of China (Grant Nos. 12122115, 11771363). The work of Jingzhi Li was partially supported by the NSF of China No. 11971221, Guangdong NSF Major Fund No. 2021ZDZX1001, the Shenzhen Sci-Tech Fund Nos. RCJC20200714114556020, JCYJ20200109115422828 and JCYJ20190809150413261, and Guangdong Provincial Key Laboratory of Computational Science and Material Design No. 2019B030301001. Weifeng Qiu’s research is partially supported by the Research Grants Council of the Hong Kong Special Administrative Region, China. (Project Nos. CityU 11302219, CityU 11300621).
WOS记录号
WOS:000878309200001
出版者
EI入藏号
20230113333416
EI主题词
Constrained optimization ; Integrodifferential equations ; Laplace transforms ; Polynomials
EI分类号
Algebra:921.1 ; Calculus:921.2 ; Mathematical Transformations:921.3 ; Systems Science:961
ESI学科分类
MATHEMATICS
来源库
EV Compendex
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/519785
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
作者单位
1.School of Mathematical Sciences and Fujian Provincial, Key Laboratory on Mathematical Modeling and High Performance Scientific Computing, Xiamen University, Fujian; 361005, China
2.Department of Mathematics and National, Center for Applied Mathematics Shenzhen and SUSTech International Center for Mathematics, Southern University of Science and Technology, Shenzhen; 518055, China
3.Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
推荐引用方式
GB/T 7714
Chen, Huangxin,Li, Jingzhi,Qiu, Weifeng. A C 0interior penalty method for m th-Laplace equation[J]. ESAIM: Mathematical Modelling and Numerical Analysis,2022,56:2081-2103.
APA
Chen, Huangxin,Li, Jingzhi,&Qiu, Weifeng.(2022).A C 0interior penalty method for m th-Laplace equation.ESAIM: Mathematical Modelling and Numerical Analysis,56,2081-2103.
MLA
Chen, Huangxin,et al."A C 0interior penalty method for m th-Laplace equation".ESAIM: Mathematical Modelling and Numerical Analysis 56(2022):2081-2103.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Huangxin]的文章
[Li, Jingzhi]的文章
[Qiu, Weifeng]的文章
百度学术
百度学术中相似的文章
[Chen, Huangxin]的文章
[Li, Jingzhi]的文章
[Qiu, Weifeng]的文章
必应学术
必应学术中相似的文章
[Chen, Huangxin]的文章
[Li, Jingzhi]的文章
[Qiu, Weifeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。