中文版 | English
题名

Asymptotic solutions to nonlinear Hawkes processes: A systematic classification of the steady-state solutions

作者
发表日期
2023-01
DOI
发表期刊
ISSN
2643-1564
EISSN
2643-1564
卷号5期号:1
摘要
The linear Hawkes point process is a first-order non-Markovian stochastic model of intermittent bursty dynamics. While its nonlinear extensions, called nonlinear Hawkes processes, are expected to be more powerful in describing the coexistence of excitatory and inhibitory effects (or negative feedback) as occurs, for instance, in seismic and neural systems, such nonlinear Hawkes processes have been found hitherto to be analytically intractable due to the interplay between their non-Markovian and nonlinear characteristics, with no analytical solutions available. Here we systematically classify the solutions of the nonlinear Hawkes processes and then present their various exact/asymptotic solutions using the field master equation approach introduced previously by us. We report explicit power-law formulas for the steady-state intensity distributions Pss(λ)∝λ-1-a, where the tail exponent a is expressed analytically as a function of parameters of the nonlinear Hawkes models. We introduce the basic analytical tools for advanced Hawkes modeling, particularly for model calibration to time-series data in various complex systems.

© 2023 authors. Published by the American Physical Society.

相关链接[来源记录]
收录类别
EI ; ESCI
语种
英语
学校署名
其他
资助项目
This work was supported by the Japan Science and Technology Agency, PRESTO (Grant No. JPMJPR20M2), the Japan Society for the Promotion of Science KAKENHI (Grants No. 20H05526 and No. 22H04830), the Intramural Research Promotion Program at the University of Tsukuba, the National Natural Science Foundation of China (Grant No. U2039202), and the Shenzhen Science and Technology Innovation Commission (Grant No. GJHZ20210705141805017). We thank Y. Terada and J.-P. Bouchaud for fruitful discussions.
WOS研究方向
Physics
WOS类目
Physics, Multidisciplinary
WOS记录号
WOS:000950578900008
出版者
EI入藏号
20230813614879
EI主题词
Nonlinear Equations ; Stochastic Systems
EI分类号
Control Systems:731.1 ; Probability Theory:922.1 ; Systems Science:961
来源库
EV Compendex
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/519790
专题前沿与交叉科学研究院
前沿与交叉科学研究院_风险分析预测与管控研究院
作者单位
1.Faculty of Engineering, Information and Systems, University of Tsukuba, Tennodai, Ibaraki, Tsukuba; 305-8573, Japan
2.Institute of Risk Analysis, Prediction and Management, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Guangdong Province, Shenzhen; 518055, China
推荐引用方式
GB/T 7714
Kanazawa, Kiyoshi,Sornette, Didier. Asymptotic solutions to nonlinear Hawkes processes: A systematic classification of the steady-state solutions[J]. Physical Review Research,2023,5(1).
APA
Kanazawa, Kiyoshi,&Sornette, Didier.(2023).Asymptotic solutions to nonlinear Hawkes processes: A systematic classification of the steady-state solutions.Physical Review Research,5(1).
MLA
Kanazawa, Kiyoshi,et al."Asymptotic solutions to nonlinear Hawkes processes: A systematic classification of the steady-state solutions".Physical Review Research 5.1(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Kanazawa, Kiyoshi]的文章
[Sornette, Didier]的文章
百度学术
百度学术中相似的文章
[Kanazawa, Kiyoshi]的文章
[Sornette, Didier]的文章
必应学术
必应学术中相似的文章
[Kanazawa, Kiyoshi]的文章
[Sornette, Didier]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。