中文版 | English
题名

Discovering Key Sub-Trajectories to Explain Traffic Prediction

作者
通讯作者Fan, Zipei; Song, Xuan
发表日期
2023-01
DOI
发表期刊
ISSN
1424-8220
EISSN
1424-8220
卷号23期号:1
摘要
Flow prediction has attracted extensive research attention; however, achieving reliable efficiency and interpretability from a unified model remains a challenging problem. In the literature, the Shapley method offers interpretable and explanatory insights for a unified framework for interpreting predictions. Nevertheless, using the Shapley value directly in traffic prediction results in certain issues. On the one hand, the correlation of positive and negative regions of fine-grained interpretation areas is difficult to understand. On the other hand, the Shapley method is an NP-hard problem with numerous possibilities for grid-based interpretation. Therefore, in this paper, we propose Trajectory Shapley, an approximate Shapley approach that functions by decomposing a flow tensor input with a multitude of trajectories and outputting the trajectories’ Shapley values in a specific region. However, the appearance of the trajectory is often random, leading to instability in interpreting results. Therefore, we propose a feature-based submodular algorithm to summarize the representative Shapley patterns. The summarization method can quickly generate the summary of Shapley distributions on overall trajectories so that users can understand the mechanisms of the deep model. Experimental results show that our algorithm can find multiple traffic trends from the different arterial roads and their Shapley distributions. Our approach was tested on real-world taxi trajectory datasets and exceeded explainable baseline models.
© 2022 by the authors.
关键词
相关链接[来源记录]
收录类别
EI ; SCI
语种
英语
学校署名
第一 ; 通讯
资助项目
This research was funded by the grants of National Key Research and Development Project (2021YFB1714400) of China, Guangdong Provincial Key Laboratory (2020B121201001) and the grant in-Aid for Scientific Research B (22H03573) of Japan Society for the Promotion of Science (JSPS).
WOS研究方向
Chemistry ; Engineering ; Instruments & Instrumentation
WOS类目
Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号
WOS:000910157500001
出版者
EI入藏号
20230213373908
EI主题词
Computational complexity ; Forecasting ; Taxicabs ; Traffic control
EI分类号
Automobiles:662.1 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
ESI学科分类
CHEMISTRY
来源库
EV Compendex
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/519792
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China
2.Center for Spatial Information Science, The University of Tokyo, 4 Chome-6-1 Komaba, Tokyo, Meguro City; 153-8505, Japan
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Wang, Hongjun,Fan, Zipei,Chen, Jiyuan,et al. Discovering Key Sub-Trajectories to Explain Traffic Prediction[J]. SENSORS,2023,23(1).
APA
Wang, Hongjun,Fan, Zipei,Chen, Jiyuan,Zhang, Lingyu,&Song, Xuan.(2023).Discovering Key Sub-Trajectories to Explain Traffic Prediction.SENSORS,23(1).
MLA
Wang, Hongjun,et al."Discovering Key Sub-Trajectories to Explain Traffic Prediction".SENSORS 23.1(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Hongjun]的文章
[Fan, Zipei]的文章
[Chen, Jiyuan]的文章
百度学术
百度学术中相似的文章
[Wang, Hongjun]的文章
[Fan, Zipei]的文章
[Chen, Jiyuan]的文章
必应学术
必应学术中相似的文章
[Wang, Hongjun]的文章
[Fan, Zipei]的文章
[Chen, Jiyuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。