[1] 第七次全国人口普查公报(第五号)——人口年龄构成情况[J]. 中国统计, 2021(05): 10-11.
[2] M Grimmer, R Riener, C J Walsh, et al. Mobility related physical and functional losses due to aging and disease - a motivation for lower limb exoskeletons[J]. Journal of NeuroEngineering and Rehabilitation, 2019, 16(1): 2.
[3] S Viteckova, P Kutilek, G de Boisboissel, et al. Empowering lower limbs exoskeletons: state-of-the-art[J]. Robotica, 2018, 36(11): 1743-1756.
[4] A Norhafizan, R A R Ghazilla, V Kasi, et al. A Review on Lower-Limb Exoskeleton System for Sit to Stand, Ascending and Descending Staircase Motion[J]. Applied Mechanics and Materials, 2014, 541-542: 1150-1155.
[5] B Kalita, J Narayan, S K Dwivedy. Development of Active Lower Limb Robotic-Based Orthosis and Exoskeleton Devices: A Systematic Review[J]. International Journal of Social Robotics, 2021, 13(4): 775-793.
[6] H Herr. Exoskeletons and orthoses: classification, design challenges and future directions[J]. Journal of NeuroEngineering and Rehabilitation, 2009, 6(1): 21.
[7] A M Dollar, H Herr. Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art[J]. IEEE Transactions on Robotics, 2008, 24(1): 144-158.
[8] T Yan, M Cempini, C M Oddo, et al. Review of assistive strategies in powered lower-limb orthoses and exoskeletons[J]. Robotics and Autonomous Systems, 2015, 64: 120-136.
[9] A J Young, D P Ferris. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(2): 171-182.
[10] C Kopp. Exoskeletons for warriors of the future[J]. Defence Today, 2011, 9(2): 38-40.
[11] D Shi, W Zhang, W Zhang, et al. A Review on Lower Limb Rehabilitation Exoskeleton Robots[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 74.
[12] I Díaz, J J Gil, E Sánchez. Lower-Limb Robotic Rehabilitation: Literature Review and Challenges[J]. Journal of Robotics, 2011, 2011: 1-11.
[13] A Esquenazi, M Talaty, A Jayaraman. Powered Exoskeletons for Walking Assistance in Persons with Central Nervous System Injuries: A Narrative Review[J]. PM&R, 2017, 9(1): 46-62.
[14] M Wehner, B Quinlivan, P M Aubin, et al. A lightweight soft exosuit for gait assistance[C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013: 3362-3369.
[15] A T Asbeck, R J Dyer, A F Larusson, et al. Biologically-inspired soft exosuit[C]//2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR). Seattle, WA: IEEE, 2013: 1-8.
[16] A T Asbeck, S M M De Rossi, I Galiana, et al. Stronger, Smarter, Softer: Next-Generation Wearable Robots[J]. IEEE Robotics & Automation Magazine, 2014, 21(4): 22-33.
[17] P Malcolm, W Derave, S Galle, et al. A Simple Exoskeleton That Assists Plantarflexion Can Reduce the Metabolic Cost of Human Walking[J]. PLoS ONE, 2013, 8(2): e56137.
[18] 万诗龙. 可穿戴下肢柔性外骨骼助力系统设计[D]. 东南大学, 2017.
[19] S Wan, M Yang, R Xi, et al. Design and control strategy of humanoid lower limb exoskeleton driven by pneumatic artificial muscles[C]//2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP). Nanjing, China: IEEE, 2016: 1-5.
[20] 李洋. 柔性下肢助力外骨骼研究[D]. 东南大学, 2020.
[21] 李超. 气动肌肉驱动的外骨骼助力系统研究[D]. 浙江大学, 2016.
[22] 陶俊. 气动助力外骨骼机器人人机协同运动控制研究[D]. 浙江大学, 2018.
[23] 王东海. 基于行走步态的被动式重力支撑柔性下肢外骨骼系统[D]. 浙江大学, 2016.
[24] D Wang, K M Lee, J Ji. A Passive Gait-Based Weight-Support Lower Extremity Exoskeleton with Compliant Joints[J]. IEEE Transactions on Robotics, 2016, 32(4): 933-942.
[25] A T Asbeck, S M M De Rossi, K G Holt, et al. A biologically inspired soft exosuit for walking assistance[J]. The International Journal of Robotics Research, 2015, 34(6): 744-762.
[26] Y Ding, I Galiana, A Asbeck, et al. Multi-joint actuation platform for lower extremity soft exosuits[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE, 2014: 1327-1334.
[27] J Park, H Park, J Kim. Performance estimation of the lower limb exoskeleton for plantarflexion using surface electromyography (sEMG) signals[J]. Journal of Biomechanical Science and Engineering, 2017, 12(2): 16-00595-16-00595.
[28] F A Panizzolo, I Galiana, A T Asbeck, et al. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking[J]. Journal of NeuroEngineering and Rehabilitation, 2016, 13(1): 43.
[29] K Schmidt, J E Duarte, M Grimmer, et al. The Myosuit: Bi-articular Anti-gravity Exosuit That Reduces Hip Extensor Activity in Sitting Transfers[J]. Frontiers in Neurorobotics, 2017, 11: 57.
[30] F L Haufe, A M Kober, K Schmidt, et al. User-driven walking assistance: first experimental results using the MyoSuit[C]//2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR). Toronto, ON, Canada: IEEE, 2019: 944-949.
[31] F L Haufe, K Schmidt, J E Duarte, et al. Activity-based training with the Myosuit: a safety and feasibility study across diverse gait disorders[J]. Journal of NeuroEngineering and Rehabilitation, 2020, 17(1): 135.
[32] L N Awad, J Bae, K O’Donnell, et al. A soft robotic exosuit improves walking in patients after stroke[J]. Science Translational Medicine, 2017, 9(400): eaai9084.
[33] ReStoreTM Soft Exo-Suit For Stroke Rehabilitation - ReWalk Robotics[EB/OL]. https://rewalk.com/restore-exo-suit/.
[34] L N Awad, A Esquenazi, G E Francisco, et al. The ReWalk ReStoreTM soft robotic exosuit: a multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation[J]. Journal of NeuroEngineering and Rehabilitation, 2020, 17(1): 80.
[35] S Y Shin, K Hohl, M Giffhorn, et al. Soft robotic exosuit augmented high intensity gait training on stroke survivors: a pilot study[J]. Journal of NeuroEngineering and Rehabilitation, 2022, 19(1): 51.
[36] K Murakami, S W John, M Komatsu, et al. External control of walking direction, using cross-wire mobile assist suit[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, BC: IEEE, 2017: 1046-1051.
[37] S W John, K Murakami, M Komatsu, et al. Cross-wire assist suit concept, for mobile and lightweight multiple degree of freedom hip assistance[C]//2017 International Conference on Rehabilitation Robotics (ICORR). London: IEEE, 2017: 387-393.
[38] S W John, M Komatsu, K Murakami, et al. Soft hip walking assist experimental system featuring variable compliance control[C]//2017 IEEE International Conference on Consumer Electronics (ICCE). Las Vegas, NV, USA: IEEE, 2017: 400-401.
[39] C Di Natali, T Poliero, M Sposito, et al. Design and Evaluation of a Soft Assistive Lower Limb Exoskeleton[J]. Robotica, 2019, 37(12): 2014-2034.
[40] E S Graf, C M Bauer, V Power, et al. Basic functionality of a prototype wearable assistive soft exoskeleton for people with gait impairments: a case study[C]//Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference. Corfu Greece: ACM, 2018: 202-207.
[41] J Chen, J Han, J Zhang. Design and Evaluation of a Mobile Ankle Exoskeleton With Switchable Actuation Configurations[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(4): 1846-1853.
[42] 刘洋. 基于绳-滑轮机构的欠驱动下肢外骨骼研究[D]. 2018.
[43] 杨业勤. 基于柔绳互绞驱动原理的柔性下肢外骨骼机器人研究[D]. 2021.
[44] 张宗伟. 面向弱能人群的助行外骨骼机器人系统研究[D]. 哈尔滨工业大学, 2021.
[45] C Xiong, T Zhou, L Zhou, et al. Multi-articular passive exoskeleton for reducing the metabolic cost during human walking[C]//2019 Wearable Robotics Association Conference. WearRAcon, 2019: 63-67.
[46] T Zhou, C Xiong, J Zhang, et al. Regulating Metabolic Energy Among Joints During Human Walking Using a Multiarticular Unpowered Exoskeleton[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 662-672.
[47] D Hu, C Xiong, T Wang, et al. Modulating Energy Among Foot-Ankle Complex With an Unpowered Exoskeleton Improves Human Walking Economy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 1961-1970.
[48] R W Nuckols, K Swaminathan, S Lee, 等. Automated detection of soleus concentric contraction in variable gait conditions for improved exosuit control[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). 2020: 4855-4862.
[49] 马如. 柔性下肢助力装置及其效果评价方法的研究[D]. 河北工业大学, 2018.
[50] S Jin, N Iwamoto, K Hashimoto, et al. Experimental Evaluation of Energy Efficiency for a Soft Wearable Robotic Suit[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(8): 1192-1201.
[51] 张雷雨, 贺彦东, 李剑锋, 等. 下肢柔性助力外衣的工效学设计与步态预测[J]. 中南大学学报(自然科学版), 2021, 4(52): 1171-1184.
[52] G Lee, J Kim, F A Panizzolo, et al. Reducing the metabolic cost of running with a tethered soft exosuit[J]. Science Robotics, 2017, 2(6): eaan6708.
[53] J Kim, R Heimgartner, G Lee, et al. Autonomous and Portable Soft Exosuit for Hip Extension Assistance with Online Walking and Running Detection Algorithm[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD: IEEE, 2018: 5473-5480.
[54] E J Park, T Akbas, A Eckert-Erdheim, et al. A Hinge-Free, Non-Restrictive, Lightweight Tethered Exosuit for Knee Extension Assistance During Walking[J]. IEEE Transactions on Medical Robotics and Bionics, 2020, 2(2): 165-175.
[55] Z Zhou, X Liu, Q Wang. Concept and Prototype Design of a Soft Knee Exoskeleton with Continuum Structure (SoftKEX)[C]//Intelligent Robotics and Applications. Cham: Springer International Publishing, 2019: 73-82.
[56] X Liu, Z Zhou, Q Wang. Real-time onboard recognition of gait transitions for a bionic knee exoskeleton in transparent mode[C]//2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018: 3202-3205.
[57] Z Zhou, Y Liao, C Wang, et al. Preliminary evaluation of gait assistance during treadmill walking with a light-weight bionic knee exoskeleton[C]//2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). Qingdao, China: IEEE, 2016: 1173-1178.
[58] B T Quinlivan, S Lee, P Malcolm, et al. Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit[J]. Science Robotics, 2017, 2(2): eaah4416.
[59] J Lee, K Seo, B Lim, et al. Effects of assistance timing on metabolic cost, assistance power, and gait parameters for a hip-type exoskeleton[C]//2017 International Conference on Rehabilitation Robotics (ICORR). London: IEEE, 2017: 498-504.
[60] W Wang, J Chen, J Ding, et al. Improving Walking Economy With an Ankle Exoskeleton Prior to Human-in-the-Loop Optimization[J]. Frontiers in Neurorobotics, 2022, 15: 1-12.
[61] W Felt, J C Selinger, J M Donelan, et al. “Body-In-The-Loop”: Optimizing Device Parameters Using Measures of Instantaneous Energetic Cost[J]. PLOS ONE, 2015, 10(8): e0135342.
[62] J Zhang, P Fiers, K A Witte, et al. Human-in-the-loop optimization of exoskeleton assistance during walking[J]. Science, 2017, 356(6344): 1280-1284.
[63] M Kim, Y Ding, P Malcolm, et al. Human-in-the-loop Bayesian optimization of wearable device parameters[J]. PLOS ONE, 2017, 12(9): e0184054.
[64] Y Ding, M Kim, S Kuindersma, et al. Human-in-the-loop optimization of hip assistance with a soft exosuit during walking[J]. SCIENCE ROBOTICS, 2018: 10.
[65] D F N Gordon, C McGreavy, A Christou, et al. Human-in-the-Loop Optimization of Exoskeleton Assistance Via Online Simulation of Metabolic Cost[J]. IEEE Transactions on Robotics, 2022: 1-20.
[66] 黄章波. 基于气动肌肉的下肢外骨骼机器人设计与控制研究[D]. 华中科技大学, 2018.
[67] 涂细凯. 基于气动肌肉外骨骼和功能性电刺激的肢体康复技术研究[D]. 华中科技大学, 2016.
[68] X Tu, J Huang, J He. Leg hybrid rehabilitation based on hip-knee exoskeleton and ankle motion induced by FES[C]//2016 International Conference on Advanced Robotics and Mechatronics (ICARM). Macau, China: IEEE, 2016: 237-242.
[69] Y Cao, J Huang, C Xiong. Single-Layer Learning-Based Predictive Control With Echo State Network for Pneumatic-Muscle-Actuators-Driven Exoskeleton[J]. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13(1): 80-90.
[70] 张宇. 柔性下肢外骨骼机器人智能控制策略研究[D]. 哈尔滨工业大学, 2020.
[71] C Chen, Y Zhang, Y Li, et al. Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance[J]. Sensors, 2020, 20(15): 4333.
[72] W Cao, C Chen, H Hu, et al. Effect of Hip Assistance Modes on Metabolic Cost of Walking With a Soft Exoskeleton[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(2): 426-436.
[73] Z Li, X Li, Q Li, et al. Human-in-the-Loop Control of Soft Exosuits Using Impedance Learning on Different Terrains[J]. IEEE Transactions on Robotics, 2022: 1-10.
[74] Q Li, W Qi, Z Li, et al. Fuzzy Based Optimization and Control of a Soft Exo-suit for Compliant Robot-Human-Environment Interaction[J]. IEEE Transactions on Fuzzy Systems, 2022: 1-13.
[75] 唐纳德·A.诺伊曼. 骨骼肌肉功能解剖学.第2版[M]. 骨骼肌肉功能解剖学.第2版, 2014.
[76] R Riener, M Rabuffetti, C Frigo. Stair ascent and descent at different inclinations[J]. Gait & Posture, 2002, 15(1): 32-44.
[77] A S McIntosh, K T Beatty, L N Dwan, et al. Gait dynamics on an inclined walkway[J]. Journal of Biomechanics, 2006, 39(13): 2491-2502.
[78] F L Buczek Jr. Three-dimensional kinematics and kinetics of the ankle and knee joints during uphill, level, and downhill walking[M]. The Pennsylvania State University, 1990.
[79] A Protopapadaki, W I Drechsler, M C Cramp, et al. Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals[J]. Clinical Biomechanics, 2007, 22(2): 203-210.
[80] S Nadeau, B J McFadyen, F Malouin. Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years: what are the challenges compared to level walking?[J]. Clinical Biomechanics, 2003, 18(10): 950-959.
[81] A D Kuo, J M Donelan, A Ruina. Energetic Consequences of Walking Like an Inverted Pendulum: Step-to-Step Transitions:[J]. Exercise and Sport Sciences Reviews, 2005, 33(2): 88-97.
[82] 侯世伦, 张新, 王安利, 高颀. 老年人膝关节骨性关节炎的运动康复:机制、方法与进展[J]. 成都体育学院学报, 2018, 44(1): 110-115.
[83] J Kim, G Lee, R Heimgartner, et al. Reducing the metabolic rate of walking and running with a versatile, portable exosuit[J]. Science, 2019, 365(6454): 668-672.
[84] Xsens Technologies B.V. MTi-600 series Data Sheet. [EB/OL].
[2019-09-10].https://mtidocs.xsens.com/mti-600-series-datasheet.[Z].
[85] A C Villa-Parra, D Delisle-Rodríguez, A López-Delis, et al. Towards a Robotic Knee Exoskeleton Control Based on Human Motion Intention through EEG and sEMGsignals[J]. Procedia Manufacturing, 2015, 3: 1379-1386.
[86] A Protopapadaki, W I Drechsler, M C Cramp, et al. Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals[J]. Clinical Biomechanics, 2007, 22(2): 203-210.
[87] J Jang, Kyungrock Kim, Jusuk Lee, et al. Online gait task recognition algorithm for hip exoskeleton[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE, 2015: 5327-5332.
[88] X Yun, E R Bachmann, H Moore, et al. Self-contained Position Tracking of Human Movement Using Small Inertial/Magnetic Sensor Modules[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation. Rome, Italy: IEEE, 2007: 2526-2533.
[89] M Hao, K Chen, C Fu. Smoother-Based 3-D Foot Trajectory Estimation Using Inertial Sensors[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(12): 3534-3542.
[90] 朱大奇, 史慧. 人工神经网络原理及应用[M]. 科学出版社, 2006.
[91] J Y Jung, W Heo, H Yang, et al. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots[J]. Sensors, 2015, 15(11): 27738-27759.
[92] V D M Laurens, G Hinton. Viualizing_data_using_t-SNE.pdf[J]. Journal of Machine Learning Research, 2008, 9(2605): 2579-2605.
[93] T D Collins, S N Ghoussayni, D J Ewins, et al. A six degrees-of-freedom marker set for gait analysis: Repeatability and comparison with a modified Helen Hayes set[J]. Gait & Posture, 2009, 30(2): 173-180.
[94] D A Winter. Biomechanics and motor control of human movement[M]. 4th ed. Hoboken, N.J: Wiley, 2009.
[95] R Featherstone. Rigid Body Dynamics Algorithms[M]. Boston, MA: Springer US, 2008.
[96] S Jin, N Iwamoto, K Hashimoto, et al. Experimental Evaluation of Energy Efficiency for a Soft Wearable Robotic Suit[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(8): 1192-1201.
[97] Y Ding, I Galiana, A T Asbeck, et al. Biomechanical and Physiological Evaluation of Multi-Joint Assistance With Soft Exosuits[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(2): 119-130.
[98] S Galle, P Malcolm, S H Collins, et al. Optimizing Robotic Exoskeletons Actuation based on Human Neuromechanics Experiments: Interaction of Push-off Timing and Work[C]//7th International symposium on Adaptive Motion of Animals and Machines (AMAM 2015). 2015: 1-3.
[99] A T Asbeck, S M M De Rossi, K G Holt, et al. A biologically inspired soft exosuit for walking assistance[J]. The International Journal of Robotics Research, 2015, 34(6): 744-762.
[100] W Wang, J Chen, Y Ji, et al. Evaluation of Lower Leg Muscle Activities During Human Walking Assisted by an Ankle Exoskeleton[J]. IEEE Transactions on Industrial Informatics, 2020, 16(11): 7168-7176.
[101] T K Uchida, A Seth, S Pouya, et al. Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Running[J]. PLOS ONE, 2016, 11(9): e0163417.
[102] S H Collins, A D Kuo. Recycling Energy to Restore Impaired Ankle Function during Human Walking[J]. PLoS ONE, 2010, 5(2): e9307.
[103] Y Ding, F A Panizzolo, C Siviy, et al. Effect of timing of hip extension assistance during loaded walking with a soft exosuit[J]. Journal of NeuroEngineering and Rehabilitation, 2016, 13(1): 87.
[104] G Huang, L Ma, H Zhu, et al. A Biologically-inspired Soft Exosuit for Knee Extension Assistance during Stair Ascent[C]//2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM). Shenzhen, China: IEEE, 2020: 570-575.
[105] Y Ding, I Galiana, A T Asbeck, et al. Biomechanical and Physiological Evaluation of Multi-Joint Assistance With Soft Exosuits[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(2): 119-130.
[106] B T Quinlivan, S Lee, P Malcolm, et al. Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit[J]. Science Robotics, 2017, 2(2): eaah4416.
[107] K Seo, J Lee, Y Lee, et al. Fully autonomous hip exoskeleton saves metabolic cost of walking[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden: IEEE, 2016: 4628-4635.
[108] C Siviy, J Bae, L Baker, et al. Offline Assistance Optimization of a Soft Exosuit for Augmenting Ankle Power of Stroke Survivors During Walking[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 828-835.
[109] P Malcolm, W Derave, S Galle, et al. A Simple Exoskeleton That Assists Plantarflexion Can Reduce the Metabolic Cost of Human Walking[J]. PLOS ONE, 2013, 8(2): 7.
[110] J B Ullauri. On the EMG-based torque estimation for humans coupled with a force-controlled elbow exoskeleton[C]//2015 International Conference on Advanced Robotics (ICAR). 2015: 302-307.
[111] M Hosseini, R Meattini, A San-Millan, et al. A sEMG-Driven Soft ExoSuit Based on Twisted String Actuators for Elbow Assistive Applications[J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5(3): 8.
[112] A Christie, J G Inglis, G Kamen, et al. Relationships between surface EMG variables and motor unit[J]. Eur J Appl Physiol, 2009: 9.
[113] E A Clancy, E L Morin, R Merletti. Sampling, noise-reduction and amplitude estimation issues in surface electromyographyଝ[J]. Journal of Electromyography and Kinesiology, 2002: 16.
[114] 王乾. 基于表面肌电信号的人体步态分析及其应用[D]. 中国科学技术大学, 2013.
[115] Y Bao, Z Liu. A Fast Grid Search Method in Support Vector Regression Forecasting Time Series[M]//E Corchado, H Yin, V Botti, et al. Intelligent Data Engineering and Automated Learning – IDEAL 2006: Vol. 4224. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006: 504-511.
[116] S Lee, J Kim, L Baker, et al. Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking[J]. Journal of NeuroEngineering and Rehabilitation, 2018, 15(1): 66.
[117] J Mockus. Application of Bayesian approach to numerical methods of global and stochastic optimization[J]. Journal of Global Optimization, 1994, 4(4): 347-365.
[118] B Shahriari, K Swersky, Z Wang, et al. Taking the Human Out of the Loop: A Review of Bayesian Optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148-175.
[119] S Greenhill, S Rana, S Gupta, et al. Bayesian Optimization for Adaptive Experimental Design: A Review[J]. IEEE Access, 2020, 8: 13937-13948.
[120] C E Rasmussen, C K I Williams. Gaussian processes for machine learning[M]. Cambridge, Mass: MIT Press, 2006.
[121] M Seeger. Gaussian Processes for Machine Learning[J]. International Journal of Neural Systems, 14(02): 69-106.
[122] J Mockus, V Tiesis, Zilinskas. The application of Bayesian methods for seeking the extremum[J]. LCW Dixon, GP Szegö, eds. Towards Global Optimisation, 1978, 2.
[123] 崔佳旭, 杨博. 贝叶斯优化方法和应用综述[J]. 软件学报, 2018, 29(10): 3068-3090.
修改评论