中文版 | English
题名

Synchronization-oriented Human-Cyber-Physical Assembly Workstation 4.0 Systems under Graduation Intelligent Manufacturing System

姓名
姓名拼音
LING Shiquan
学号
11850013
学位类型
博士
学位专业
智能制造
导师
融亦鸣
导师单位
机械与能源工程系
论文答辩日期
2023-01-12
论文提交日期
2023-04-12
学位授予单位
香港大学
学位授予地点
香港
摘要

“Industry 4.0 (I4.0)” was first released by Germany in 2011, which is regarded as the starting point of the fourth Industrial Revolution. The past decade has witnessed a great deal of research and practice efforts in exploring the benefits of I4.0 transformation in reshaping value creation, building new business models, and enhancing the strategic competitiveness of enterprises. By contrast with previous industrial revolutions triggered by a single disruptive technology, the driving force of I4.0 is considered to be the synthesis of cutting-edge technologies from many fields. Although it is difficult to exhaust the continual emerging technologies due to I4.0 is still in progress, the transformation features it has brought are already apparent, that is, end-to-end integration of engineering systems, vertical integration of manufacturing systems, and horizontal integration of value chains, which provides a lot of methodological, organizational, and practical innovation opportunities. In this context, this thesis focuses on exploring the I4.0 transformation in the organization, operation and management of assembly systems, and the following priority research works have been carried out.

       The first work explores the transformation of the organization and operation of the assembly workstation in the I4.0 era (AW4.0), which is the basic building block of assembly systems. A human-cyber-physical framework for AW4.0 is proposed to support the smart networking of hyper objects with human integration. A spatio-temporal synchronization strategy is developed to achieve the consistency of hyper objects coordination. A real-life case is carried out through a full-scale prototype to validate the potential benefits of AW4.0. Research perspectives based on three-dimensional synchronization strategies are also given.

       The second work presents a real-time data-driven hyper objects orchestrating for human-machine synchronization (RHYTHMS) based on a service-oriented human-to-machine architecture, in which model-reference adaptive fuzzy control is used for real-time information sharing and synchronous coordination of smart human-machine work systems. A real-life assembly case is carried out by AW4.0 to quantitatively analyze the benefits of RHYTHMS in proactive ergonomic risks mitigation.

       The third work proposes a real-time data-driven synchronous reconfiguration of smart assembly cell line (ACL) workshops (Sync-RAS) under the Graduation Intelligent Manufacturing System (GiMS). Computer vision is employed to realize real-time information visibility within assembly cells at the operation process level. An appropriate information-sharing architecture is designed to coordinate the ACL operations in rapid response to changing demands under GiMS. A Sync-RAS mechanism is proposed to optimize the reconfiguration of ACL. A real-life case is used to verify the benefits of Sync-RAS.

       The fourth work investigates the heterogeneous demand-capacity synchronization (HDCS) problem in ACL operations. An integrated and adaptive planning, scheduling, and execution framework with a hierarchical closed-loop structure is designed to incorporate appropriate decision-making mechanisms at different levels with proper real-time aggregated data feedback from different time horizons to solve the HDCS problem in dynamic environments. A modified GiMS is introduced to integrate the decision-making process at different levels and ensure smooth production in a synchronous manner. An industrial case is used to verify the production synchronization performance of the proposed approach.

关键词
语种
英语
培养类别
联合培养
入学年份
2018
学位授予年份
2023
参考文献列表

[Adner, R., & Levinthal, D. (2001). Demand heterogeneity and technology evolution: implications for product and process innovation. Management Science, 47(5), 611-628.Afifi, M. (2019). 11K Hands: Gender recognition and biometric identification using a large dataset of hand images. Multimedia Tools and Applications, 78(15), 20835-20854.Alcácer, V., & Cruz-Machado, V. (2019). Scanning the industry 4.0: A literature review on technologies for manufacturing systems. Engineering Science and Technology, an International Journal, 22(3), 899-919.Ashton, K. (2009). That ‘internet of things’ thing. RFID journal, 22(7), 97-114.Bagheri, B., Yang, S., Kao, H. A., & Lee, J. (2015). Cyber-physical systems architecture for self-aware machines in industry 4.0 environment. IFAC-PapersOnLine, 48(3), 1622-1627.Barari, A., Tsuzuki, M. D. S. G., Cohen, Y., & Macchi, M. (2021). intelligent manufacturing systems towards industry 4.0 era. Journal of Intelligent Manufacturing, 1-4.Bartodziej, C. J. (2017). The concept industry 4.0. In The concept industry 4.0 (pp. 27-50). Springer Gabler, Wiesbaden.Battaïa, O., Otto, A., Sgarbossa, F., & Pesch, E. (2018). Future trends in management and operation of assembly systems: from customized assembly systems to cyber-physical systems. Omega, 78, 1-4.Battini, D., Faccio, M., Persona, A., & Sgarbossa, F. (2011). New methodological framework to improve productivity and ergonomics in assembly system design. International Journal of Industrial Ergonomics, 41(1), 30-42.Bauters, K., Cottyn, J., Claeys, D., Slembrouck, M., Veelaert, P., & Van Landeghem, H. (2018). Automated work cycle classification and performance measurement for manual work stations. Robotics and Computer-Integrated Manufacturing, 51, 139-157.Becker, C., & Scholl, A. (2006). A survey on problems and methods in generalized assembly line balancing. European Journal of Operational Research, 168(3), 694-715.Berlin, C., & Adams, C. (2017). Production ergonomics: Designing work systems to support optimal human performance. Ubiquity Press, London.Bi, Z. M., Wang, L., & Lang, S. Y. (2007). Current status of reconfigurable assembly systems. International Journal of Manufacturing Research, 2(3), 303-328.Bi, Z. M., Lang, S. Y., Shen, W., & Wang, L. (2008). Reconfigurable manufacturing systems: the state of the art. International Journal of Production Research, 46(4), 967-992.Bilberg, A., & Malik, A. A. (2019). Digital twin driven human–robot collaborative assembly. CIRP Annals, 68(1), 499-502.Bilgen, B., & Çelebi, Y. (2013). Integrated production scheduling and distribution planning in dairy supply chain by hybrid modelling. Annals of Operations Research, 211(1), 55-82.Black, J. T. (2000). Manufacturing systems. Encyclopedia of Production and Manufacturing Management. Springer, Boston.Bortolini, M., Ferrari, E., Gamberi, M., Pilati, F., & Faccio, M. (2017). Assembly system design in the Industry 4.0 era: a general framework. IFAC-PapersOnLine, 50(1), 5700-5705.Bortolini, M., Faccio, M., Galizia, F. G., Gamberi, M., & Pilati, F. (2020). Design, engineering and testing of an innovative adaptive automation assembly system. Assembly Automation.Bortolini, M., Faccio, M., Galizia, F. G., Gamberi, M., & Pilati, F. (2021). Adaptive automation assembly systems in the industry 4.0 era: a reference framework and full–scale prototype. Applied Sciences, 11(3), 1256.Bousdekis, A., Apostolou, D., & Mentzas, G. (2020). A human cyber physical system framework for operator 4.0–artificial intelligence symbiosis. Manufacturing Letters, 25, 10-15.Branke, J., Nguyen, S., Pickardt, C. W., & Zhang, M. (2015). Automated design of production scheduling heuristics: A review. IEEE Transactions on Evolutionary Computation, 20(1), 110-124.Brocal, F., González, C., Komljenovic, D., Katina, P. F., & Sebastián, M. A. (2019). Emerging risk management in industry 4.0: an approach to improve organizational and human performance in the complex systems. Complexity, 2019.Bridger, R. (2018). Introduction to human factors and ergonomics. CRC Press, Boca Raton, FL.Butala, P., & Mpofu, K. (2019). Assembly Systems. CIRP Encyclopedia of Production Engineering. Springer, Berlin, Heidelberg.Calvo, J. (2017). The Predominant Role of IT as a Competitive Global SCM Strategy: The Case of Roland DG Japan, a Manufacturing Company. China-USA Business Review, 16(8).Cardin, O., Trentesaux, D., Thomas, A., Castagna, P., Berger, T., & Bril El-Haouzi, H. (2017). Coupling predictive scheduling and reactive control in manufacturing hybrid control architectures: state of the art and future challenges. Journal of Intelligent Manufacturing, 28(7), 1503-1517.Casalino, A., Zanchettin, A. M., Piroddi, L., & Rocco, P. (2019). Optimal scheduling of human–robot collaborative assembly operations with time petri nets. IEEE Transactions on Automation Science and Engineering, 18(1), 70-84.Chankov, S., Hütt, M. T., & Bendul, J. (2018). Influencing factors of synchronization in manufacturing systems. International Journal of Production Research, 56(14), 4781-4801.Chen, J., Huang, G. Q., Luo, H., & Wang, J. (2015). Synchronisation of production scheduling and shipment in an assembly flowshop. International Journal of Production Research, 53(9), 2787-2802.Chen, J., Wang, M., Kong, X. T., Huang, G. Q., Dai, Q., & Shi, G. (2019). Manufacturing synchronization in a hybrid flowshop with dynamic order arrivals. Journal of Intelligent Manufacturing, 30(7), 2659-2668.Chen, Y., Yuan, Z., & Chen, B. (2018). Process optimization with consideration of uncertainties—An overview. Chinese journal of chemical engineering, 26(8), 1700-1706.Cimini, C., Pirola, F., Pinto, R., & Cavalieri, S. (2020). A human-in-the-loop manufacturing control architecture for the next generation of production systems. Journal of Manufacturing Systems, 54, 258-271.Cohen, Y., Naseraldin, H., Chaudhuri, A., & Pilati, F. (2019). Assembly systems in Industry 4.0 era: a road map to understand Assembly 4.0. The International Journal of Advanced Manufacturing Technology, 105(9), 4037-4054.Cruz Salazar, L. A., Ryashentseva, D., Lüder, A., & Vogel-Heuser, B. (2019). Cyber-physical production systems architecture based on multi-agent’s design pattern—comparison of selected approaches mapping four agent patterns. The International Journal of Advanced Manufacturing Technology, 105(9), 4005-4034.Dai, H. N., Wang, H., Xu, G., Wan, J., & Imran, M. (2020). Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies. Enterprise Information Systems, 14(9-10), 1279-1303.Dalenogare, L. S., Benitez, G. B., Ayala, N. F., & Frank, A. G. (2018). The expected contribution of Industry 4.0 technologies for industrial performance. International Journal of Production Economics, 204, 383-394.Dias, L. S., & Ierapetritou, M. G. (2016). Integration of scheduling and control under uncertainties: Review and challenges. Chemical Engineering Research and Design, 116, 98-113.Díaz-Madroñero, M., Mula, J., & Peidro, D. (2014). A review of discrete-time optimization models for tactical production planning. International Journal of Production Research, 52(17), 5171-5205.Ding, K., Chan, F. T., Zhang, X., Zhou, G., & Zhang, F. (2019). Defining a digital twin-based cyber-physical production system for autonomous manufacturing in smart shop floors. International Journal of Production Research, 57(20), 6315-6334.Dolgui, A., Ivanov, D., Sethi, S. P., & Sokolov, B. (2019). Scheduling in production, supply chain and Industry 4.0 systems by optimal control: fundamentals, state-of-the-art and applications. International Journal of Production Research, 57(2), 411-432.Doyle K. M., & Kopacek, P. (2020, September). Do we need synchronization of the human and robotics to make industry 5.0 a success story? In The International Symposium for Production Research (pp. 302-311). Springer, Cham.ElMaraghy, H., Monostori, L., Schuh, G., & ElMaraghy, W. (2021). Evolution and future of manufacturing systems. CIRP Annals, 70(2), 635-658.El-Samahy, A. A., & Shamseldin, M. A. (2018). Brushless DC motor tracking control using self-tuning fuzzy PID control and model reference adaptive control. Ain Shams Engineering Journal, 9(3), 341-352.Esmaeilian, B., Behdad, S., & Wang, B. (2016). The evolution and future of manufacturing: A review. Journal of Manufacturing Systems, 39, 79-100.Faccio, M., Ferrari, E., Gamberi, M., & Pilati, F. (2019). Human Factor Analyser for work measurement of manual manufacturing and assembly processes. The International Journal of Advanced Manufacturing Technology, 103(1), 861-877.Fantini, P., Pinzone, M., & Taisch, M. (2020). Placing the operator at the centre of Industry 4.0 design: Modelling and assessing human activities within cyber-physical systems. Computers & Industrial Engineering, 139, 105058.Feng, G. (2018). Analysis and synthesis of fuzzy control systems: a model-based approach. CRC Press, Boca Raton, FL.Figueira, G., & Almada-Lobo, B. (2014). Hybrid simulation–optimization methods: A taxonomy and discussion. Simulation Modelling Practice and Theory, 46, 118-134.Frazzon, E. M., Albrecht, A., Pires, M., Israel, E., Kück, M., & Freitag, M. (2018). Hybrid approach for the integrated scheduling of production and transport processes along supply chains. International Journal of Production Research, 56(5), 2019-2035.Gao, J., Yao, Y., Zhu, V. C., Sun, L., & Lin, L. (2011). Service-oriented manufacturing: a new product pattern and manufacturing paradigm. Journal of Intelligent Manufacturing, 22(3), 435-446.Gilchrist, A. (2016). Introducing Industry 4.0. In Industry 4.0 (pp. 195-215). Apress, Berkeley, CA.Gill, H. (2006). NSF perspective and status on cyber-physical systems. In National Workshop on Cyber-physical Systems. Austin, TX.Glock, C. H., Grosse, E. H., Neumann, W. P., & Sgarbossa, F. (2017). Human factors in industrial and logistic system design. Computers & Industrial Engineering, 111, 463–466.Groover, M. P. (2007). Work systems and the methods, measurement, and management of work (pp. 27-46). Upper Saddle River, NJ: Pearson Prentice Hall.Guo, D., Li, M., Zhong, R., & Huang, G. Q. (2020a). Graduation Intelligent Manufacturing System (GiMS): an Industry 4.0 paradigm for production and operations management. Industrial Management & Data Systems.Guo, D., Zhong, R. Y., Lin, P., Lyu, Z., Rong, Y., & Huang, G. Q. (2020b). Digital twin-enabled Graduation Intelligent Manufacturing System for fixed-position assembly islands. Robotics and Computer-Integrated Manufacturing, 63, 101917.Guo, D., Zhong, R. Y., Ling, S., Rong, Y., & Huang, G. Q. (2020c). A roadmap for Assembly 4.0: self-configuration of fixed-position assembly islands under Graduation Intelligent Manufacturing System. International Journal of Production Research, 58(15), 4631-4646.Guo, D., Li, M., Lyu, Z., Kang, K., Wu, W., Zhong, R. Y., & Huang, G. Q. (2021a). Synchroperation in industry 4.0 manufacturing. International Journal of Production Economics, 238, 108171.Guo, D., Zhong, R. Y., Rong, Y., & Huang, G. G. (2021b). Synchronization of shop-floor logistics and manufacturing under IIoT and digital twin-enabled graduation intelligent manufacturing system. IEEE Transactions on Cybernetics.Guzman, E., Andres, B., & Poler, R. (2022). Models and algorithms for production planning, scheduling and sequencing problems: A holistic framework and a systematic review. Journal of Industrial Information Integration, 27, 100287.Gyulai, D., & Monostori, L. (2017). Capacity management of modular assembly systems. Journal of Manufacturing Systems, 43, 88-99.Hancock, P. A., & Chignell, M. H. (1987). Adaptive Control in Human-Machine Systems. In Advances in psychology (Vol. 47, pp. 305-345). North-Holland.Harjunkoski, I., Nyström, R., & Horch, A. (2009). Integration of scheduling and control—Theory or practice? Computers & Chemical Engineering, 33(12), 1909-1918.Hashemi-Petroodi, S. E., Thevenin, S., Kovalev, S., & Dolgui, A. (2020). Operations management issues in design and control of hybrid human-robot collaborative manufacturing systems: a survey. Annual Reviews in Control, 49, 264-276.Hignett, S., & McAtamney, L. (2000). Rapid entire body assessment (REBA). Applied Ergonomics, 31(2), 201-205.Hankel, M., & Rexroth, B. (2015). Industrie 4.0: The Reference Architectural Model Industrie 4.0 (RAMI 4.0). ZVEI.Hoc, J. M. (2000). From human–machine interaction to human–machine cooperation. Ergonomics, 43(7), 833-843.Hofmann, E., & Rüsch, M. (2017). Industry 4.0 and the current status as well as future prospects on logistics. Computers in Industry, 89, 23-34.Hu, S. J., Ko, J., Weyand, L., ElMaraghy, H. A., Lien, T. K., Koren, Y., Bley, H., Chryssolouris, G., Nasr, N., & Shpitalni, M. (2011). Assembly system design and operations for product variety. CIRP Annals, 60(2), 715-733.Hu, S. J. (2013). Evolving paradigms of manufacturing: From mass production to mass customization and personalization. Procedia CIRP, 7, 3-8.Huang, G. Q., & Mak, K. L. (2001). Issues in the development and implementation of web applications for product design and manufacture. International Journal of Computer Integrated Manufacturing, 14(1), 125-135.Huang, G. Q., Zhang, Y. F., Chen, X., & Newman, S. T. (2008a). RFID-enabled real-time wireless manufacturing for adaptive assembly planning and control. Journal of Intelligent Manufacturing, 19(6), 701-713.Huang, G. Q., Zhang, Y. F., & Jiang, P. Y. (2008b). RFID-based wireless manufacturing for real-time management of job shop WIP inventories. The International Journal of Advanced Manufacturing Technology, 36(7), 752-764.Huang, G. Q., Wright, P. K., & Newman, S. T. (2009a). Wireless manufacturing: a literature review, recent developments, and case studies. International Journal of Computer Integrated Manufacturing, 22(7), 579-594.Huang, G. Q., Zhang, Y., Dai, Q. Y., Ho, O., & Xu, F. J. (2009b). Agent-based workflow management for RFID-enabled real-time reconfigurable manufacturing. In Collaborative design and planning for digital manufacturing (pp. 341-364). Springer, London.Huang, G. Q., Qu, T., Fang, M. J., & Bramley, A. N. (2011). RFID-enabled gateway product service system for collaborative manufacturing alliances. CIRP Annals, 60(1), 465-468.Huang, G. Q., Vogel-Heuser, B., Zhou, M., & Dario, P. (2021). Digital technologies and automation: the human and eco-centered foundations for the factory of the future [TC Spotlight]. IEEE Robotics & Automation Magazine, 28(3), 174-179.Huang, Q. (2022). Resolving Overcapacity. In Understanding China's Manufacturing Industry (pp. 73-89). Springer, Singapore.Huang, Y., Huang, G. Q., & Newman, S. T. (2011). Coordinating pricing and inventory decisions in a multi-level supply chain: A game-theoretic approach. Transportation Research Part E: Logistics and Transportation Review, 47(2), 115-129.IBM. (2022, October 11). Industry 4.0 and Cognitive Manufacturing. Retrieved from https://www.ibm.com/downloads/cas/M8J5BA6R.IBM ILOG. (2022, October 11). IBM ILOG CPLEX Optimization Studio documentation, Retrieved from https://www.ibm.com/docs/zh/icos/12.9.0?topic=cp-optimizer.International Organization for Standardization (ISO). (2004). Ergonomic principles in the design of work systems (Standards No. 6385). Geneva, Switzerland: ISO.International Ergonomics Association (IEA). (2022, October 11). What Is Ergonomics? Retrieved from https://www.iea.cc/whats/.Isa, K., & Tsuru, T. (2002). Cell production and workplace innovation in Japan: toward a new model for Japanese manufacturing?. Industrial Relations: A Journal of Economy and Society, 41(4), 548-578.Ivanov, D., Tang, C. S., Dolgui, A., Battini, D., & Das, A. (2021). Researchers' perspectives on Industry 4.0: multi-disciplinary analysis and opportunities for operations management. International Journal of Production Research, 59(7), 2055-2078.Jiao, J., Zhou, F., Gebraeel, N. Z., & Duffy, V. (2020). Towards augmenting cyber-physical-human collaborative cognition for human-automation interaction in complex manufacturing and operational environments. International Journal of Production Research, 58(16), 5089-5111.Jiang, M., Leung, K. H., Lyu, Z., & Huang, G. Q. (2020). Picking-replenishment synchronization for robotic forward-reserve warehouses. Transportation Research Part E: Logistics and Transportation Review, 144, 102138.Kadir, B. A., Broberg, O., & da Conceicao, C. S. (2019). Current research and future perspectives on human factors and ergonomics in Industry 4.0. Computers & Industrial Engineering, 137, 106004.Kadir, B. A., & Broberg, O. (2021). Human-centered design of work systems in the transition to industry 4.0. Applied Ergonomics, 92, 103334.Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for implementing the strategic initiative Industrie 4.0: Final report of the Industrie 4.0 Working Group. Forschungsunion: Berlin, Germany.Kagermann, H. (2015). Change through digitization—Value creation in the age of Industry 4.0. In Management of permanent change (pp. 23-45). Springer Gabler, Wiesbaden.Karwowski, W. (2006). International Encyclopedia of Ergonomics and Human Factors. CRC Press, Boca Raton, FL.Kemény, Z., Váncza, J., Wang, L., & Wang, X. V. (2021). Human–robot collaboration in manufacturing: A multi-agent view. In Advanced human-robot collaboration in manufacturing (pp. 3-41). Springer, Cham.Koch, S., Matveev, A., Jiang, Z., Williams, F., Artemov, A., Burnaev, E., Alexa, M., Zorin, D., & Panozzo, D. (2019). Abc: A big cad model dataset for geometric deep learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9601-9611).Kong, X. T., Fang, J., Luo, H., & Huang, G. Q. (2015). Cloud-enabled real-time platform for adaptive planning and control in auction logistics center. Computers & Industrial Engineering, 84, 79-90.Kong, X. T., Luo, H., Huang, G. Q., & Yang, X. (2019). Industrial wearable system: the human-centric empowering technology in Industry 4.0. Journal of Intelligent Manufacturing, 30(8), 2853-2869.Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., & Van Brussel, H. (1999). Reconfigurable manufacturing systems. CIRP Annals, 48(2), 527-540.Koren, Y., Gu, X., & Huang, W. (2018). Reconfigurable manufacturing systems: Principles, design, and future trends. Frontiers of Mechanical Engineering, 13(2), 121-136.Koskimäki, H., Huikari, V., Siirtola, P., & Röning, J. (2013). Behavior modeling in industrial assembly lines using a wrist-worn inertial measurement unit. Journal of Ambient Intelligence and Humanized Computing, 4(2), 187-194.Koulamas, C., & Kalogeras, A. (2018). Cyber-physical systems and digital twins in the industrial internet of things]. Computer, 51(11), 95-98.Kozák, Š. (2014). State-of-the-art in control engineering. Journal of Electrical Systems and Information Technology, 1(1), 1-9.Kraus, S., Harms, R., & Schwarz, E. J. (2006). Strategic planning in smaller enterprises–new empirical findings. Management Research News.Kreipl, S., & Pinedo, M. (2004). Planning and scheduling in supply chains: an overview of issues in practice. Production and Operations management, 13(1), 77-92.Krishna, R., Lee, D., Fei-Fei, L., & Bernstein, M. S. (2022). Socially situated artificial intelligence enables learning from human interaction. Proceedings of the National Academy of Sciences, 119(39), e2115730119.Kroemer, K. H. (2007). Anthropometry and biomechanics: anthromechanics. In Biomechanics in ergonomics (pp. 59-106). CRC Press, Boca Raton, FL.Krüger, J., & Nguyen, T. D. (2015). Automated vision-based live ergonomics analysis in assembly operations. CIRP Annals, 64(1), 9-12.Krugh, M., & Mears, L. (2018). A complementary cyber-human systems framework for industry 4.0 cyber-physical systems. Manufacturing Letters, 15, 89-92.Kusiak, A. (2017). Smart manufacturing must embrace big data. Nature, 544(7648), 23-25.Kusiak, A. (2018). Smart manufacturing. International Journal of Production Research, 56(1-2), 508-517.Laborie, P., Rogerie, J., Shaw, P., & Vilím, P. (2018). IBM ILOG CP optimizer for scheduling. Constraints, 23(2), 210-250.Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & Information Systems Engineering, 6(4), 239-242.Lau, J. S., Huang, G. Q., Mak, K. L., & Liang, L. (2005). Distributed project scheduling with information sharing in supply chains: part I—an agent-based negotiation model. International Journal of Production Research, 43(22), 4813-4838.Lee, E. A. (2008, May). Cyber physical systems: Design challenges. In 2008 11th IEEE international symposium on object and component-oriented real-time distributed computing (ISORC) (pp. 363-369). Orlando, FL, USA.Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23.Lee, S., Liu, L., Radwin, R., & Li, J. (2021). Machine learning in manufacturing ergonomics: Recent advances, challenges, and opportunities. IEEE Robotics and Automation Letters, 6(3), 5745-5752.Leng, J., Liu, Q., Ye, S., Jing, J., Wang, Y., Zhang, C., Zhang, D., & Chen, X. (2020). Digital twin-driven rapid reconfiguration of the automated manufacturing system via an open architecture model. Robotics and Computer-Integrated Manufacturing, 63, 101895.Li, M., Xu, G., Lin, P., & Huang, G. Q. (2019). Cloud-based mobile gateway operation system for industrial wearables. Robotics and Computer-Integrated Manufacturing, 58, 43-54.Li, M., & Huang, G. Q. (2021). Production-intralogistics synchronization of industry 4.0 flexible assembly lines under graduation intelligent manufacturing system. International Journal of Production Economics, 241, 108272.Li, M., Li, M., Ding, H., Ling, S., & Huang, G. Q. (2022). Graduation-inspired synchronization for industry 4.0 planning, scheduling, and execution. Journal of Manufacturing Systems, 64, 94-106.Lin, P., Li, M., Kong, X., Chen, J., Huang, G. Q., & Wang, M. (2018). Synchronisation for smart factory-towards IoT-enabled mechanisms. International Journal of Computer Integrated Manufacturing, 31(7), 624-635.Lin, P., Shen, L., Zhao, Z., & Huang, G. Q. (2019). Graduation manufacturing system: synchronization with IoT-enabled smart tickets. Journal of Intelligent Manufacturing, 30(8), 2885-2900.Ling, S., Guo, D., Yan, D., Zhao, X., Leng, Y., Rong, Y., & Huang, G. Q. (2021). Computer Vision-enabled Human-Cyber-Physical Workstation for Proactive Ergonomic Risks Mitigation. IFAC-PapersOnLine, 54(1), 450-457.Ling, S., Guo, D., Rong, Y., & Huang, G. Q. (2022a). Real-time data-driven synchronous reconfiguration of human-centric smart assembly cell line under graduation intelligent manufacturing system. Journal of Manufacturing Systems, 65, 378-390.Ling, S., Guo, D., Rong, Y., & Huang, G. Q. (2022b). Spatio-temporal synchronisation for human-cyber-physical assembly workstation 4.0 systems. International Journal of Production Research, 60(2), 704-722.Ling, S., Li, M., Guo, D., Rong, Y., & Huang, G. Q. (2022c). Assembly Workstation 4.0: Concept, Framework and Research Perspectives for Assembly Systems Implementation in the Industry 4.0 Era. IFAC-PapersOnLine, 55(2), 420-426.Ling, S., Yuan, Y., Yan, D., Leng, Y., Rong, Y., & Huang, G. Q. (2022d) Rhythms: Real-Time Data-Driven Human-Machine Synchronization for Proactive Ergonomic Risks Mitigation in the Context of Industry 4.0 and Beyond. Available at SSRN 4153658.Ling, S., Guo, D., Li, M., Rong, Y., & Huang, G. Q. (2022e). Heterogeneous Demand-Capacity Synchronization for Smart Assembly Cell Line based on Artificial Intelligence-enabled IIoT. Journal of Intelligent Manufacturing.Liu, C., Stecke, K. E., Lian, J., & Yin, Y. (2014). An implementation framework for seru production. International Transactions in Operational Research, 21(1), 1-19.Lo, C. K., Chen, C. H., & Zhong, R. Y. (2021). A review of digital twin in product design and development. Advanced Engineering Informatics, 48, 101297.Longo, F., Padovano, A., & Umbrello, S. (2020). Value-oriented and ethical technology engineering in industry 5.0: A human-centric perspective for the design of the factory of the future. Applied Sciences, 10(12), 4182.Lorenz, T., Mörtl, A., & Hirche, S. (2013, March). Movement synchronization fails during non-adaptive human–robot interaction. In 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 189-190). Tokyo, Japan.Lu, Y., Adrados, J. S., Chand, S. S., & Wang, L. (2021). Humans Are Not Machines-Anthropocentric Human-Machine Symbiosis for Ultra-Flexible Smart Manufacturing. Engineering, 7(6), 734-737.Lu, Y., Zheng, H., Chand, S., Xia, W., Liu, Z., Xu, X., Wang, L., Qin, Z., & Bao, J. (2022). Outlook on human-centric manufacturing towards Industry 5.0. Journal of Manufacturing Systems, 62, 612-627.Luo, H., Huang, G. Q., Shi, Y., Qu, T., & Zhang, Y. F. (2012). Hybrid flowshop scheduling with family setup time and inconsistent family formation. International Journal of Production Research, 50(6), 1457-1475.Luo, H., Wang, K., Kong, X. T., Lu, S., & Qu, T. (2017). Synchronized production and logistics via ubiquitous computing technology. Robotics and Computer-Integrated Manufacturing, 45, 99-115.Maddikunta, P. K. R., Pham, Q. V., Prabadevi, B., Deepa, N., Dev, K., Gadekallu, T. R., Ruby, R., & Liyanage, M. (2022). Industry 5.0: A survey on enabling technologies and potential applications. Journal of Industrial Information Integration, 26, 100257.Maganha, I., Silva, C., & Ferreira, L. M. D. (2018). Understanding reconfigurability of manufacturing systems: An empirical analysis. Journal of Manufacturing Systems, 48, 120-130.Mahamood, R. M., Jen, T. C., Akinlabi, S. A., Hassan, S., Abdulrahman, K. O., & Akinlabi, E. T. (2021). Role of additive manufacturing in the era of Industry 4.0. In Additive Manufacturing (pp. 107-126). Woodhead Publishing.Maravelias, C. T., & Sung, C. (2009). Integration of production planning and scheduling: Overview, challenges and opportunities. Computers & Chemical Engineering, 33(12), 1919-1930.Maurizio, F., Ferrari, E., Mauro, G., & Pilati, F. (2019). Human Factor Analyser for work measurement of manual manufacturing and assembly processes. The International Journal of Advanced Manufacturing Technology, 103(1-4), 861-877.McAtamney, L., & Corlett, E. N. (1993). RULA: a survey method for the investigation of work-related upper limb disorders. Applied Ergonomics, 24(2), 91-99.Millot, P. (2014). Designing human-machine cooperation systems. John Wiley & Sons, Hoboken, New Jersey.Miyake, D. I. (2006). The shift from belt conveyor line to work-cell based assembly systems to cope with increasing demand variation in Japanese industries. International Journal of Automotive Technology and Management, 6(4), 419-439.Moghaddam, M., Cadavid, M. N., Kenley, C. R., & Deshmukh, A. V. (2018). Reference architectures for smart manufacturing: A critical review. Journal of manufacturing systems, 49, 215-225.Morioka, M., & Sakakibara, S. (2010). A new cell production assembly system with human–robot cooperation. CIRP Annals, 59(1), 9-12.Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer, O., Schuh, G., Sihn, W., & Ueda, K. (2016). Cyber-physical systems in manufacturing. CIRP Annals, 65(2), 621-641.Muniraj, S. P., & Xu, X. (2021). An implementation of OPC UA for machine-to-machine communications in a smart factory. Procedia Manufacturing, 53, 52-58.Nakagawa, E. Y., Antonino, P. O., Schnicke, F., Capilla, R., Kuhn, T., & Liggesmeyer, P. (2021). Industry 4.0 reference architectures: State of the art and future trends. Computers & Industrial Engineering, 156, 107241.National Institute for Occupational Safety and Health (NIOSH). (1981). Work Practices Guide for Manual Lifting, Publ. 81-122 Cincinnati: US Government Printing Office.National Science Foundation (NSF). (2022, October 11). Cyber-physical systems (CPS). Retrieved from https://beta.nsf.gov/funding/opportunities/cyber-physical-systems-cps.Neumann, W. P., Winkelhaus, S., Grosse, E. H., & Glock, C. H. (2021). Industry 4.0 and the human factor–A systems framework and analysis methodology for successful development. International Journal of Production Economics, 233, 107992.Nguyen Ngoc, H., Lasa, G., & Iriarte, I. (2022). Human-centred design in industry 4.0: case study review and opportunities for future research. Journal of Intelligent Manufacturing, 33(1), 35-76.Nunes, D. S., Zhang, P., & Silva, J. S. (2015). A survey on human-in-the-loop applications towards an internet of all. IEEE Communications Surveys & Tutorials, 17(2), 944-965.Olsen, T. L., & Tomlin, B. (2020). Industry 4.0: Opportunities and challenges for operations management. Manufacturing & Service Operations Management, 22(1), 113-122.Ouyang, Z., Leung, E. K., & Huang, G. Q. (2022). Community logistics and dynamic community partitioning: A new approach for solving e-commerce last mile delivery. European Journal of Operational Research.Oztemel, E., & Gursev, S. (2020). Literature review of Industry 4.0 and related technologies. Journal of Intelligent Manufacturing, 31(1), 127-182.Panetta, K. (2022, October 11). Gartner Top 10 Strategic Technology Trends for 2020, Gartner. Retrieved from https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2020/Parente, M., Figueira, G., Amorim, P., & Marques, A. (2020). Production scheduling in the context of Industry 4.0: review and trends. International Journal of Production Research, 58(17), 5401-5431.Parks, C. M. (2004). Digital Yatai at OMRON: a case study. In IIE Annual Conference. Proceedings (p. 1). Institute of Industrial and Systems Engineers (IISE).Park, S. C. (2018). The Fourth Industrial Revolution and implications for innovative cluster policies. Ai & Society, 33(3), 433-445.Patel, P., Ali, M. I., & Sheth, A. (2018). From raw data to smart manufacturing: AI and semantic web of things for industry 4.0. IEEE Intelligent Systems, 33(4), 79-86.Peruzzini, M., Pellicciari, M., & Gadaleta, M. (2019). A comparative study on computer-integrated set-ups to design human-centred manufacturing systems. Robotics and Computer-Integrated Manufacturing, 55, 265-278.Pfister, A., West, A. M., Bronner, S., & Noah, J. A. (2014). Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis. Journal of medical engineering & technology, 38(5), 274-280.Phanden, R. K., Jain, A., & Verma, R. (2011). Integration of process planning and scheduling: a state-of-the-art review. International Journal of Computer Integrated Manufacturing, 24(6), 517-534.Pheasant, S., & Haslegrave, C. M. (2018). Bodyspace: Anthropometry, ergonomics and the design of work. CRC Press, Boca Raton, FL.Pikovsky, A., Rosenblum, M., Kurths, J., & Strogatz, S. (2003). What is synchronization? Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press.Pillsbury, S., & Lübben, E. (2018). Global Digital Operations 2018 Survey. Strategy & Port of the PwC network, 1.Pilati, F., Faccio, M., Gamberi, M., & Regattieri, A. (2020). Learning manual assembly through real-time motion capture for operator training with augmented reality. Procedia Manufacturing, 45, 189-195.Pinedo, M. L. (2009). Planning and scheduling in manufacturing and services. New York: Springer.Pinedo, M. L. (2012). Scheduling: Theory, Algorithms, and System. New York: Springer.Pirvu, B. C., Zamfirescu, C. B., & Gorecky, D. (2016). Engineering insights from an anthropocentric cyber-physical system: A case study for an assembly station. Mechatronics, 34, 147-159.Plattform Industrie 4.0. (2022, October 11). What is Industrie 4.0? Plattform Industrie 4.0. Retrieved from https://www.plattform-i40.de/IP/Navigation/EN/Industrie40/WhatIsIndustrie40/what-is-industrie40Qian, C., Zhang, Y., Jiang, C., Pan, S., & Rong, Y. (2020). A real-time data-driven collaborative mechanism in fixed-position assembly systems for smart manufacturing. Robotics and Computer-Integrated Manufacturing, 61, 101841.Qin, J., Ma, Q., Shi, Y., & Wang, L. (2016). Recent advances in consensus of multi-agent systems: A brief survey. IEEE Transactions on Industrial Electronics, 64(6), 4972-4983.Qiu, X., Luo, H., Xu, G., Zhong, R., & Huang, G. Q. (2015). Physical assets and service sharing for IoT-enabled Supply Hub in Industrial Park (SHIP). International Journal of Production Economics, 159, 4-15.Qu, T., Lei, S. P., Wang, Z. Z., Nie, D. X., Chen, X., & Huang, G. Q. (2016). IoT-based real-time production logistics synchronization system under smart cloud manufacturing. The International Journal of Advanced Manufacturing Technology, 84(1), 147-164.Rasmussen, J. (1983). Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Transactions on Systems, Man, and Cybernetics, (3), 257-266.Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).Reining, C., Niemann, F., Moya Rueda, F., Fink, G. A., & ten Hompel, M. (2019). Human activity recognition for production and logistics—a systematic literature review. Information, 10(8), 245.Roblek, V., Meško, M., & Krapež, A. (2016). A complex view of industry 4.0. Sage open, 6(2), 2158244016653987.Romero, D., Bernus, P., Noran, O., Stahre, J., & Fast-Berglund, Å. (2016, September). The operator 4.0: Human cyber-physical systems & adaptive automation towards human-automation symbiosis work systems. In IFIP international conference on advances in production management systems (pp. 677-686). Springer, Cham.Romero, D., Stahre, J., & Taisch, M. (2020). The Operator 4.0: Towards socially sustainable factories of the future. Computers & Industrial Engineering, 139, 106128. Rossit, D. A., Tohmé, F., & Frutos, M. (2019). Industry 4.0: smart scheduling. International Journal of Production Research, 57(12), 3802-3813.Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch, M. (2015). Industry 4.0: The future of productivity and growth in manufacturing industries. Boston consulting group, 9(1), 54-89.Saif, U., Guan, Z., Wang, B., Mirza, J., & Huang, S. (2014). A survey on assembly lines and its types. Frontiers of Mechanical Engineering, 9(2), 95-105.Sakazume, Y. (2005). Is Japanese Cell Manufacturing a New System?: A Comparative Study between Japanese Cell Manufacturing and Cellular Manufacturing. Journal of Japan Industrial Management Association, 55(6), 341-349.Sakurada, L., & Leitão, P. (2020, June). Multi-agent systems to implement industry 4.0 components. In 2020 IEEE Conference on Industrial Cyber physical Systems (ICPS) (Vol. 1, pp. 21-26). Tampere, Finland.Salvendy, G. (2012). Handbook of human factors and ergonomics. John Wiley & Sons, Hoboken, New Jersey.Sami, C., Luc, L., Gunther, R., & Tolio, T. A. M. (2019). CIRP encyclopedia of production engineering. Springer, Berlin, Heidelberg.Schirner, G., Erdogmus, D., Chowdhury, K., & Padir, T. (2013). The future of human-in-the-loop cyber-physical systems. Computer, 46(1), 36-45.Sgarbossa, F., Grosse, E. H., Neumann, W. P., Battini, D., & Glock, C. H. (2020). Human factors in production and logistics systems of the future. Annual Reviews in Control, 49, 295-305.Shafer, S. M., Nembhard, D. A., & Uzumeri, M. V. (2001). The effects of worker learning, forgetting, and heterogeneity on assembly line productivity. Management Science, 47(12), 1639-1653.Sharpe, R., Van Lopik, K., Neal, A., Goodall, P., Conway, P. P., & West, A. A. (2019). An industrial evaluation of an Industry 4.0 reference architecture demonstrating the need for the inclusion of security and human components. Computers in Industry, 108, 37-44.Shobrys, D. E., & White, D. C. (2002). Planning, scheduling and control systems: why cannot they work together. Computers & chemical engineering, 26(2), 149-160.Sikora, R., & Shaw, M. J. (1998). A multi-agent framework for the coordination and integration of information systems. Management Science, 44, 565-578.Simmler, M., & Frischknecht, R. (2021). A taxonomy of human–machine collaboration: capturing automation and technical autonomy. AI & SOCIETY, 36(1), 239-250.Sisinni, E., Saifullah, A., Han, S., Jennehag, U., & Gidlund, M. (2018). Industrial internet of things: Challenges, opportunities, and directions. IEEE Transactions on Industrial Informatics, 14(11), 4724-4734.Sparrow, D. E., Kruger, K., & Basson, A. H. (2022). An architecture to facilitate the integration of human workers in Industry 4.0 environments. International Journal of Production Research, 60(15), 4778-4796.Stadtler, H. (2003). Multilevel lot sizing with setup times and multiple constrained resources: Internally rolling schedules with lot-sizing windows. Operations Research, 51(3), 487-502.Stecke, K. E., Yin, Y., Kaku, I., & Murase, Y. (2012). Seru: the organizational extension of JIT for a super-talent factory. International Journal of Strategic Decision Sciences, 3(1), 106-119.Stoop, P. P., & Wiers, V. C. (1996). The complexity of scheduling in practice. International Journal of Operations & Production Management, 16(10), 37-53.Stricker, N., Kuhnle, A., Sturm, R., & Friess, S. (2018). Reinforcement learning for adaptive order dispatching in the semiconductor industry. CIRP Annals, 67(1), 511-514.Stoll, H. W. (1999). Product design methods and practices. CRC Press, Boca Raton, FL.Sun, D. (2018). Synchronization and control of multiagent systems. CRC Press, Boca Raton, FL.Tan, Q., Tong, Y., Wu, S., & Li, D. (2019). Anthropocentric approach for smart assembly: Integration and collaboration. Journal of Robotics, 1-8.Tao, F., Zhang, L., Venkatesh, V. C., Luo, Y., & Cheng, Y. (2011). Cloud manufacturing: a computing and service-oriented manufacturing model. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(10), 1969-1976.Tao, F., & Zhang, M. (2017). Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. IEEE Access, 5, 20418-20427.Tao, F., Zhang, H., Liu, A., & Nee, A. Y. (2018). Digital twin in industry: State-of-the-art. IEEE Transactions on industrial informatics, 15(4), 2405-2415.Taylor, F. W. (1919). The principles of scientific management. Harper & Brothers, New York, NY.Thramboulidis, K. (2015). A cyber–physical system-based approach for industrial automation systems. Computers in Industry, 72, 92-102.Thramboulidis, K., Vachtsevanou, D. C., & Solanos, A. (2018, May). Cyber-physical microservices: An IoT-based framework for manufacturing systems. In 2018 IEEE Industrial Cyber-Physical Systems (ICPS) (pp. 232-239). St. Petersburg, Russia.Tomašević, I., Stojanović, D., Slović, D., Simeunović, B., & Jovanović, I. (2021). Lean in High-Mix/Low-Volume industry: a systematic literature review. Production Planning & Control, 32(12), 1004-1019.Tseng, M.M., Wang, Y., & Jiao, R.J. (2017). Mass Customization. CIRP Encyclopedia of Production Engineering. Springer, Berlin, Heidelberg.Usländer, T., & Epple, U. (2015). Reference model of industrie 4.0 service architectures. at-Automatisierungstechnik, 63(10), 858-866.Valdesolo, P., Ouyang, J., & DeSteno, D. (2010). The rhythm of joint action: Synchrony promotes cooperative ability. Journal of Experimental Social Psychology, 46(4), 693-695.Wan, J., Chen, M., Xia, F., Di, L., & Zhou, K. (2013). From machine-to-machine communications towards cyber-physical systems. Computer Science and Information Systems, 10(3), 1105-1128.Wang, B., Zheng, P., Yin, Y., Shih, A., & Wang, L. (2022). Toward human-centric smart manufacturing: A human-cyber-physical systems (HCPS) perspective. Journal of Manufacturing Systems, 63, 471-490.Wang, C., Bi, Z., & Da Xu, L. (2014). IoT and cloud computing in automation of assembly modeling systems. IEEE Transactions on Industrial Informatics, 10(2), 1426-1434.Wang, L., Gao, R., Váncza, J., Krüger, J., Wang, X. V., Makris, S., & Chryssolouris, G. (2019). Symbiotic human-robot collaborative assembly. CIRP Annals, 68(2), 701-726.Wang, L. (2022). A futuristic perspective on human-centric assembly. Journal of Manufacturing Systems, 62, 199-201.Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing smart factory of industrie 4.0: an outlook. International Journal of Distributed Sensor Networks, 12(1), 3159805. Wang, X., Ong, S. K., & Nee, A. Y. (2016). A comprehensive survey of augmented reality assembly research. Advances in Manufacturing, 4(1), 1-22.Wang, X. V., Kemény, Z., Váncza, J., & Wang, L. (2017). Human–robot collaborative assembly in cyber-physical production: Classification framework and implementation. CIRP Annals, 66(1), 5-8.Wang, Y., Ma, H. S., Yang, J. H., & Wang, K. S. (2017). Industry 4.0: a way from mass customization to mass personalization production. Advances in Manufacturing, 5(4), 311-320.Weiss, G. (1999). Multiagent systems: a modern approach to distributed artificial intelligence. MIT press.Wu, K., & Shen, Y. (2020). A unified view on planning, scheduling and dispatching for a factory. Advanced Engineering Informatics, 46, 101188.Wu, W., Shen, L., Zhao, Z., Li, M., & Huang, G. Q. (2022). Industrial IoT and long short-term memory network enabled genetic indoor tracking for factory logistics. IEEE Transactions on Industrial Informatics.Xu, L. D., Xu, E. L., & Li, L. (2018). Industry 4.0: state of the art and future trends. International Journal of Production Research, 56(8), 2941-2962.Xu, S. X., & Huang, G. Q. (2017). Efficient multi‐attribute multi‐unit auctions for B2B e‐commerce logistics. Production and Operations Management, 26(2), 292-304.Xu, X. (2012). From cloud computing to cloud manufacturing. Robotics and Computer-Integrated Manufacturing, 28(1), 75-86. Xu, X., Lu, Y., Vogel-Heuser, B., & Wang, L. (2021). Industry 4.0 and Industry 5.0—Inception, conception and perception. Journal of Manufacturing Systems, 61, 530-535.Yao, X., Zhou, J., Lin, Y., Li, Y., Yu, H., & Liu, Y. (2019). Smart manufacturing based on cyber-physical systems and beyond. Journal of Intelligent Manufacturing, 30(8), 2805-2817.Yin, Y., Stecke, K. E., & Li, D. (2018). The evolution of production systems from Industry 2.0 through Industry 4.0. International Journal of Production Research, 56(1-2), 848-861.Yu, Y., & Tang, J. (2019). Review of seru production. Frontiers of Engineering Management, 6(2), 183-192.Yu, T., Huang, J., & Chang, Q. (2021). Optimizing task scheduling in human-robot collaboration with deep multi-agent reinforcement learning. Journal of Manufacturing Systems, 60, 487-499.Zamfirescu, C. B., Pirvu, B. C., Schlick, J., & Zuehlke, D. (2013). Preliminary insides for an anthropocentric cyber-physical reference architecture of the smart factory. Studies in Informatics and Control, 22(3), 269-278.Zandin, K. B. (2002). MOST work measurement systems. CRC Press, Boca Raton, FL.Zhang, J., Ding, G., Zou, Y., Qin, S., & Fu, J. (2019). Review of job shop scheduling research and its new perspectives under Industry 4.0. Journal of Intelligent Manufacturing, 30(4), 1809-1830.Zhang, J., & Tao, D. (2020). Empowering things with intelligence: a survey of the progress, challenges, and opportunities in artificial intelligence of things. IEEE Internet of Things Journal, 8(10), 7789-7817.Zhang, L., Luo, Y., Tao, F., Li, B. H., Ren, L., Zhang, X., Guo, H., Cheng, Y., Hu, A., & Liu, Y. (2014). Cloud manufacturing: a new manufacturing paradigm. Enterprise Information Systems, 8(2), 167-187.Zhang, Y., Huang, G. Q., Qu, T., Ho, O., & Sun, S. (2011). Agent-based smart objects management system for real-time ubiquitous manufacturing. Robotics and Computer-Integrated Manufacturing, 27(3), 538-549.Zhang, Y., Qian, C., Lv, J., & Liu, Y. (2016). Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor. IEEE Transactions on Industrial Informatics, 13(2), 737-747.Zhang, Y., Guo, Z., Lv, J., & Liu, Y. (2018). A framework for smart production-logistics systems based on CPS and industrial IoT. IEEE Transactions on Industrial Informatics, 14(9), 4019-4032.Zhang, Y., Zhu, H., Tang, D., Zhou, T., & Gui, Y. (2022). Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems. Robotics and Computer-Integrated Manufacturing, 78, 102412.Zheng, P., Sang, Z., Zhong, R. Y., Liu, Y., Liu, C., Mubarok, K., Yu, S., & Xu, X. (2018). Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives. Frontiers of Mechanical Engineering, 13(2), 137-150.Zhong, R. Y., Dai, Q. Y., Qu, T., Hu, G. J., & Huang, G. Q. (2013). RFID-enabled real-time manufacturing execution system for mass-customization production. Robotics and Computer-Integrated Manufacturing, 29(2), 283-292.Zhong, R. Y., Newman, S. T., Huang, G. Q., & Lan, S. (2016). Big Data for supply chain management in the service and manufacturing sectors: Challenges, opportunities, and future perspectives. Computers & Industrial Engineering, 101, 572-591.Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of industry 4.0: a review. Engineering, 3(5), 616-630.Zhong, R. Y., & Ge, W. (2018). Internet of things enabled manufacturing: a review. International Journal of Agile Systems and Management, 11(2), 126-154.Zhou, J., Li, P., Zhou, Y., Wang, B., Zang, J., & Meng, L. (2018). Toward new-generation intelligent manufacturing. Engineering, 4(1), 11-20.Zhou, J., Zhou, Y., Wang, B., & Zang, J. (2019). Human–cyber–physical systems (HCPSs) in the context of new-generation intelligent manufacturing. Engineering, 5(4), 624-636.Zhou, L., Zhang, L., & Konz, N. (2022). Computer Vision Techniques in Manufacturing. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1-13.Zuberek, W. M. (1991). Timed Petri nets definitions, properties, and applications. Microelectronics Reliability, 31(4), 627-644.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/520023
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
Ling SQ. Synchronization-oriented Human-Cyber-Physical Assembly Workstation 4.0 Systems under Graduation Intelligent Manufacturing System[D]. 香港. 香港大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11850013-凌世全-机械与能源工程(11072KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[凌世全]的文章
百度学术
百度学术中相似的文章
[凌世全]的文章
必应学术
必应学术中相似的文章
[凌世全]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。