题名 | Reinforcement Learning Based Vertical Scaling for Hybrid Deployment in Cloud Computing |
作者 | |
通讯作者 | Guiying Li |
发表日期 | 2022-12
|
会议名称 | the 17th International Conference on Bio-inspired Computing: Theories and Applications (BIC-TA 2022)
|
会议录名称 | |
会议日期 | 2022-12-16
|
会议地点 | 武汉
|
摘要 | To maximize the CPU utilization of the server, offline tasks are usually deployed to the same server where the online service is running. Considering the necessity to ensure the service quality of online services, it is common practice to isolate the resources of online services. How to set the resource quota for online services not only affects the service quality of online services, but also affects the number and the stability of offline tasks that can be run on the server. Traditional rule-based methods or prediction-based methods will cause over-provision and fail to consider the stability of offline tasks, which often cannot achieve stability and efficiency. In this paper, reinforcement learning is proposed for the first time to solve the hybrid deployment of online services and offline tasks and dynamically adjust the resource quota of online services more effectively. Compared with the original state of the server, our proposed method reduces CPU idleness rate by 35.32% and increases CPU resource utilization rate by 3.84%. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
收录类别 | |
来源库 | 人工提交
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/523890 |
专题 | 工学院_计算机科学与工程系 理学院_统计与数据科学系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 2.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen 518055, China 3.Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen 518055, China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系; 斯发基斯可信自主系统研究院 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Jianqi Cao,Guiying Li,Peng Yang. Reinforcement Learning Based Vertical Scaling for Hybrid Deployment in Cloud Computing[C],2022.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
6. 会议Reinforcement L(632KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论