中文版 | English
题名

Enabling surrogate-assisted evolutionary reinforcement learning via policy embedding

作者
通讯作者Peng Yang
发表日期
2022-12
会议名称
the 17th International Conference on Bio-inspired Computing: Theories and Applications (BIC-TA 2022)
会议录名称
会议日期
2022-12-16
会议地点
武汉
摘要

Evolutionary Reinforcement Learning (ERL) that applying Evolutionary Algorithms (EAs) to optimize the weight parameters of Deep Neural Network (DNN) based policies has been widely regarded as an alternative to traditional reinforcement learning methods. However, the evaluation of the iteratively generated population usually requires a large amount of computational time and can be prohibitively expensive, which may potentially restrict the applicability of ERL. Surrogate is often used to reduce the computational burden of evaluation in EAs. Unfortunately, in ERL, each individual of policy usually represents millions of weights parameters of DNN. This high-dimensional representation of policy has introduced a great challenge to the application of surrogates into ERL to speed up training. This paper proposes a PE-SAERL Framework to at the first time enable surrogate-assisted evolutionary reinforcement learning via policy embedding (PE). Empirical results on 5 Atari games show that the proposed method can perform more efficiently than the four state-of-the-art algorithms. The training process is accelerated up to 7x on tested games, comparing to its counterpart without the surrogate and PE.

关键词
学校署名
第一 ; 通讯
语种
英语
收录类别
来源库
人工提交
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/523892
专题工学院_计算机科学与工程系
理学院_统计与数据科学系
工学院_斯发基斯可信自主研究院
作者单位
1.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Chin
2.Faculty of engineering, Shenzhen MSU-BIT university, Shenzhen 518172, Chin
3.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen 518055, Chin
4.Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen 518055, Chin
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系;  统计与数据科学系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Lan Tang,Xiaxi Li,Jinyuan Zhang,et al. Enabling surrogate-assisted evolutionary reinforcement learning via policy embedding[C],2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
7. 会议论文Enabling surr(1481KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lan Tang]的文章
[Xiaxi Li]的文章
[Jinyuan Zhang]的文章
百度学术
百度学术中相似的文章
[Lan Tang]的文章
[Xiaxi Li]的文章
[Jinyuan Zhang]的文章
必应学术
必应学术中相似的文章
[Lan Tang]的文章
[Xiaxi Li]的文章
[Jinyuan Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。