中文版 | English
题名

A branching particle system approximation for solving partially observed stochastic optimal control problems via stochastic maximum principle

作者
通讯作者Xiong, Jie
发表日期
2023-03-01
DOI
发表期刊
ISSN
2194-0401
EISSN
2194-041X
摘要
This paper develops an efficient numerical algorithm for solving a class of partially observed stochastic optimal control problems with correlated noises. The main contribution of this paper is threefold: first, we introduce a relaxed system and assume the Roxin condition (convexity requirement) on coefficients. Then, an optimal relaxed system provides an optimal admissible control in a broader sense, and a relaxed control turns out to be a usual admissible control. Second, we transform the optimal control problem into an optimization problem for a convex functional by employing a projection operator. A stochastic gradient descent approach is then proposed and its convergence properties are demonstrated. Last but not least, we present a branching particle system (branching particle filter) to approximate the optimal filter. Due to the random nature of the coefficients in the Zakai equation, neither the dual approach nor the mild solution approach can be used. We devise a novel method for establishing the convergence of the branching particle system approximation, as well as its rate of convergence. This branching-type particle filter algorithm allows us to tackle non-Markovian environments. The major body of this paper concludes with a numerical case study.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
NSFC["11831010","2022YFA1006103","2022YFA1006102"] ; NSF of Shandong Province["61925306","61821004"] ; null[ZR2019ZD42] ; null[ZR2020ZD24]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied ; Statistics & Probability
WOS记录号
WOS:000955853200001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/523937
专题理学院_数学系
作者单位
1.Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
2.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
3.Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen 518055, Peoples R China
通讯作者单位数学系;  南方科技大学
推荐引用方式
GB/T 7714
Wan, Hexiang,Wang, Guangchen,Xiong, Jie. A branching particle system approximation for solving partially observed stochastic optimal control problems via stochastic maximum principle[J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS,2023.
APA
Wan, Hexiang,Wang, Guangchen,&Xiong, Jie.(2023).A branching particle system approximation for solving partially observed stochastic optimal control problems via stochastic maximum principle.STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS.
MLA
Wan, Hexiang,et al."A branching particle system approximation for solving partially observed stochastic optimal control problems via stochastic maximum principle".STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS (2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wan, Hexiang]的文章
[Wang, Guangchen]的文章
[Xiong, Jie]的文章
百度学术
百度学术中相似的文章
[Wan, Hexiang]的文章
[Wang, Guangchen]的文章
[Xiong, Jie]的文章
必应学术
必应学术中相似的文章
[Wan, Hexiang]的文章
[Wang, Guangchen]的文章
[Xiong, Jie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。