中文版 | English
题名

Condition-invariant and compact visual place description by convolutional autoencoder

作者
通讯作者Zhang, Hong
发表日期
2023-03-01
DOI
发表期刊
ISSN
0263-5747
EISSN
1469-8668
卷号32期号:6
摘要
Visual place recognition (VPR) in condition-varying environments is still an open problem. Popular solutions are convolutional neural network (CNN)-based image descriptors, which have been shown to outperform traditional image descriptors based on hand-crafted visual features. However, there are two drawbacks of current CNN-based descriptors: (a) their high dimension and (b) lack of generalization, leading to low efficiency and poor performance in real robotic applications. In this paper, we propose to use a convolutional autoencoder (CAE) to tackle this problem. We employ a high-level layer of a pre-trained CNN to generate features and train a CAE to map the features to a low-dimensional space to improve the condition invariance property of the descriptor and reduce its dimension at the same time. We verify our method in four challenging real-world datasets involving significant illumination changes, and our method is shown to be superior to the state-of-the-art. The code of our work is publicly available at https://github.com/MedlarTea/CAE-VPR.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Leading Talents Program of Guangdong Province[2019QN01X761] ; National Nature Science Foundation of China[62103179]
WOS研究方向
Robotics
WOS类目
Robotics
WOS记录号
WOS:000950064500001
出版者
EI入藏号
20231213785732
EI主题词
Convolution ; Learning systems
EI分类号
Information Theory and Signal Processing:716.1
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/523977
专题工学院_电子与电气工程系
作者单位
1.Southern Univ Sci & Technol, Shenzhen Key Lab Robot & Comp Vis, Shenzhen, Peoples R China
2.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
3.Guangdong Univ Technol, Sch Mech & Elect Engn, Guangzhou, Peoples R China
第一作者单位南方科技大学;  电子与电气工程系
通讯作者单位南方科技大学;  电子与电气工程系
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Ye, Hanjing,Chen, Weinan,Yu, Jingwen,et al. Condition-invariant and compact visual place description by convolutional autoencoder[J]. ROBOTICA,2023,32(6).
APA
Ye, Hanjing,Chen, Weinan,Yu, Jingwen,He, Li,Guan, Yisheng,&Zhang, Hong.(2023).Condition-invariant and compact visual place description by convolutional autoencoder.ROBOTICA,32(6).
MLA
Ye, Hanjing,et al."Condition-invariant and compact visual place description by convolutional autoencoder".ROBOTICA 32.6(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ye, Hanjing]的文章
[Chen, Weinan]的文章
[Yu, Jingwen]的文章
百度学术
百度学术中相似的文章
[Ye, Hanjing]的文章
[Chen, Weinan]的文章
[Yu, Jingwen]的文章
必应学术
必应学术中相似的文章
[Ye, Hanjing]的文章
[Chen, Weinan]的文章
[Yu, Jingwen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。