题名 | Condition-invariant and compact visual place description by convolutional autoencoder |
作者 | |
通讯作者 | Zhang, Hong |
发表日期 | 2023-03-01
|
DOI | |
发表期刊 | |
ISSN | 0263-5747
|
EISSN | 1469-8668
|
卷号 | 32期号:6 |
摘要 | Visual place recognition (VPR) in condition-varying environments is still an open problem. Popular solutions are convolutional neural network (CNN)-based image descriptors, which have been shown to outperform traditional image descriptors based on hand-crafted visual features. However, there are two drawbacks of current CNN-based descriptors: (a) their high dimension and (b) lack of generalization, leading to low efficiency and poor performance in real robotic applications. In this paper, we propose to use a convolutional autoencoder (CAE) to tackle this problem. We employ a high-level layer of a pre-trained CNN to generate features and train a CAE to map the features to a low-dimensional space to improve the condition invariance property of the descriptor and reduce its dimension at the same time. We verify our method in four challenging real-world datasets involving significant illumination changes, and our method is shown to be superior to the state-of-the-art. The code of our work is publicly available at https://github.com/MedlarTea/CAE-VPR. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Leading Talents Program of Guangdong Province[2019QN01X761]
; National Nature Science Foundation of China[62103179]
|
WOS研究方向 | Robotics
|
WOS类目 | Robotics
|
WOS记录号 | WOS:000950064500001
|
出版者 | |
EI入藏号 | 20231213785732
|
EI主题词 | Convolution
; Learning systems
|
EI分类号 | Information Theory and Signal Processing:716.1
|
ESI学科分类 | ENGINEERING
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/523977 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Shenzhen Key Lab Robot & Comp Vis, Shenzhen, Peoples R China 2.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China 3.Guangdong Univ Technol, Sch Mech & Elect Engn, Guangzhou, Peoples R China |
第一作者单位 | 南方科技大学; 电子与电气工程系 |
通讯作者单位 | 南方科技大学; 电子与电气工程系 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Ye, Hanjing,Chen, Weinan,Yu, Jingwen,et al. Condition-invariant and compact visual place description by convolutional autoencoder[J]. ROBOTICA,2023,32(6).
|
APA |
Ye, Hanjing,Chen, Weinan,Yu, Jingwen,He, Li,Guan, Yisheng,&Zhang, Hong.(2023).Condition-invariant and compact visual place description by convolutional autoencoder.ROBOTICA,32(6).
|
MLA |
Ye, Hanjing,et al."Condition-invariant and compact visual place description by convolutional autoencoder".ROBOTICA 32.6(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论