题名 | Prediction of lattice thermal conductivity with two-stage interpretable machine learning |
作者 | |
通讯作者 | Gao, Zhibin; Zhu, Guimei |
发表日期 | 2023-03-01
|
DOI | |
发表期刊 | |
ISSN | 1674-1056
|
EISSN | 2058-3834
|
卷号 | 32期号:4 |
摘要 | Thermoelectric and thermal materials are essential in achieving carbon neutrality. However, the high cost of lattice thermal conductivity calculations and the limited applicability of classical physical models have led to the inefficient development of thermoelectric materials. In this study, we proposed a two-stage machine learning framework with physical interpretability incorporating domain knowledge to calculate high/low thermal conductivity rapidly. Specifically, crystal graph convolutional neural network (CGCNN) is constructed to predict the fundamental physical parameters related to lattice thermal conductivity. Based on the above physical parameters, an interpretable machine learning model-sure independence screening and sparsifying operator (SISSO), is trained to predict the lattice thermal conductivity. We have predicted the lattice thermal conductivity of all available materials in the open quantum materials database (OQMD) (). The proposed approach guides the next step of searching for materials with ultra-high or ultra-low lattice thermal conductivity and promotes the development of new thermal insulation materials and thermoelectric materials. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Natural Science Foundation of China[
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Multidisciplinary
|
WOS记录号 | WOS:000961371600001
|
出版者 | |
EI入藏号 | 20231513882475
|
EI主题词 | Crystal Lattices
; Domain Knowledge
; Forecasting
; Thermal Conductivity
; Thermal Insulation
; Thermoelectric Equipment
; Thermoelectricity
|
EI分类号 | Heat Insulating Materials:413.2
; Thermoelectric Energy:615.4
; Thermodynamics:641.1
; Electricity: Basic Concepts And Phenomena:701.1
; Artificial Intelligence:723.4
; Crystal Lattice:933.1.1
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/523983 |
专题 | 工学院_深港微电子学院 理学院_物理系 工学院_材料科学与工程系 |
作者单位 | 1.Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China 2.Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China 3.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China 4.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China 5.Univ Colorado, Paul M Rady Dept Mech Engn, Dept Phys, Boulder, CO 80305 USA |
通讯作者单位 | 深港微电子学院 |
推荐引用方式 GB/T 7714 |
Hu, Jinlong,Zuo, Yuting,Hao, Yuzhou,et al. Prediction of lattice thermal conductivity with two-stage interpretable machine learning[J]. CHINESE PHYSICS B,2023,32(4).
|
APA |
Hu, Jinlong.,Zuo, Yuting.,Hao, Yuzhou.,Shu, Guoyu.,Wang, Yang.,...&Li, Baowen.(2023).Prediction of lattice thermal conductivity with two-stage interpretable machine learning.CHINESE PHYSICS B,32(4).
|
MLA |
Hu, Jinlong,et al."Prediction of lattice thermal conductivity with two-stage interpretable machine learning".CHINESE PHYSICS B 32.4(2023).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Prediction of lattic(1503KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论