中文版 | English
题名

Prediction of lattice thermal conductivity with two-stage interpretable machine learning

作者
通讯作者Gao, Zhibin; Zhu, Guimei
发表日期
2023-03-01
DOI
发表期刊
ISSN
1674-1056
EISSN
2058-3834
卷号32期号:4
摘要

Thermoelectric and thermal materials are essential in achieving carbon neutrality. However, the high cost of lattice thermal conductivity calculations and the limited applicability of classical physical models have led to the inefficient development of thermoelectric materials. In this study, we proposed a two-stage machine learning framework with physical interpretability incorporating domain knowledge to calculate high/low thermal conductivity rapidly. Specifically, crystal graph convolutional neural network (CGCNN) is constructed to predict the fundamental physical parameters related to lattice thermal conductivity. Based on the above physical parameters, an interpretable machine learning model-sure independence screening and sparsifying operator (SISSO), is trained to predict the lattice thermal conductivity. We have predicted the lattice thermal conductivity of all available materials in the open quantum materials database (OQMD) (). The proposed approach guides the next step of searching for materials with ultra-high or ultra-low lattice thermal conductivity and promotes the development of new thermal insulation materials and thermoelectric materials.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[
WOS研究方向
Physics
WOS类目
Physics, Multidisciplinary
WOS记录号
WOS:000961371600001
出版者
EI入藏号
20231513882475
EI主题词
Crystal Lattices ; Domain Knowledge ; Forecasting ; Thermal Conductivity ; Thermal Insulation ; Thermoelectric Equipment ; Thermoelectricity
EI分类号
Heat Insulating Materials:413.2 ; Thermoelectric Energy:615.4 ; Thermodynamics:641.1 ; Electricity: Basic Concepts And Phenomena:701.1 ; Artificial Intelligence:723.4 ; Crystal Lattice:933.1.1
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/523983
专题工学院_深港微电子学院
理学院_物理系
工学院_材料科学与工程系
作者单位
1.Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
2.Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China
3.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
4.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
5.Univ Colorado, Paul M Rady Dept Mech Engn, Dept Phys, Boulder, CO 80305 USA
通讯作者单位深港微电子学院
推荐引用方式
GB/T 7714
Hu, Jinlong,Zuo, Yuting,Hao, Yuzhou,et al. Prediction of lattice thermal conductivity with two-stage interpretable machine learning[J]. CHINESE PHYSICS B,2023,32(4).
APA
Hu, Jinlong.,Zuo, Yuting.,Hao, Yuzhou.,Shu, Guoyu.,Wang, Yang.,...&Li, Baowen.(2023).Prediction of lattice thermal conductivity with two-stage interpretable machine learning.CHINESE PHYSICS B,32(4).
MLA
Hu, Jinlong,et al."Prediction of lattice thermal conductivity with two-stage interpretable machine learning".CHINESE PHYSICS B 32.4(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Prediction of lattic(1503KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hu, Jinlong]的文章
[Zuo, Yuting]的文章
[Hao, Yuzhou]的文章
百度学术
百度学术中相似的文章
[Hu, Jinlong]的文章
[Zuo, Yuting]的文章
[Hao, Yuzhou]的文章
必应学术
必应学术中相似的文章
[Hu, Jinlong]的文章
[Zuo, Yuting]的文章
[Hao, Yuzhou]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。