中文版 | English
题名

Modeling Under-Dispersed Count Data by the Generalized Poisson Distribution via Two New MM Algorithms

作者
通讯作者Li, Shuang
发表日期
2023-03-01
DOI
发表期刊
EISSN
2227-7390
卷号11期号:6
摘要
Under-dispersed count data often appear in clinical trials, medical studies, demography, actuarial science, ecology, biology, industry and engineering. Although the generalized Poisson (GP) distribution possesses the twin properties of under- and over-dispersion, in the past 50 years, many authors only treat the GP distribution as an alternative to the negative binomial distribution for modeling over-dispersed count data. To our best knowledge, the issues of calculating maximum likelihood estimates (MLEs) of parameters in GP model without covariates and with covariates for the case of under-dispersion were not solved up to now. In this paper, we first develop a new minimization-maximization (MM) algorithm to calculate the MLEs of parameters in the GP distribution with under-dispersion, and then we develop another new MM algorithm to compute the MLEs of the vector of regression coefficients for the GP mean regression model for the case of under-dispersion. Three hypothesis tests (i.e., the likelihood ratio, Wald and score tests) are provided. Some simulations are conducted. The Bangladesh demographic and health surveys dataset is analyzed to illustrate the proposed methods and comparisons with the existing Conway-Maxwell-Poisson regression model are also presented.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[12171225] ; Research Grants Council of Hong Kong[UGC/FDS14/P05/20]
WOS研究方向
Mathematics
WOS类目
Mathematics
WOS记录号
WOS:000957724300001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/523992
专题理学院_统计与数据科学系
理学院_数学系
作者单位
1.Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Peoples R China
2.Hang Seng Univ Hong Kong, Dept Supply Chain & Informat Management, Shatin, Hong Kong, Peoples R China
3.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
第一作者单位统计与数据科学系
通讯作者单位数学系
第一作者的第一单位统计与数据科学系
推荐引用方式
GB/T 7714
Li, Xun-Jian,Tian, Guo-Liang,Zhang, Mingqian,et al. Modeling Under-Dispersed Count Data by the Generalized Poisson Distribution via Two New MM Algorithms[J]. MATHEMATICS,2023,11(6).
APA
Li, Xun-Jian,Tian, Guo-Liang,Zhang, Mingqian,Ho, George To Sum,&Li, Shuang.(2023).Modeling Under-Dispersed Count Data by the Generalized Poisson Distribution via Two New MM Algorithms.MATHEMATICS,11(6).
MLA
Li, Xun-Jian,et al."Modeling Under-Dispersed Count Data by the Generalized Poisson Distribution via Two New MM Algorithms".MATHEMATICS 11.6(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Xun-Jian]的文章
[Tian, Guo-Liang]的文章
[Zhang, Mingqian]的文章
百度学术
百度学术中相似的文章
[Li, Xun-Jian]的文章
[Tian, Guo-Liang]的文章
[Zhang, Mingqian]的文章
必应学术
必应学术中相似的文章
[Li, Xun-Jian]的文章
[Tian, Guo-Liang]的文章
[Zhang, Mingqian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。