题名 | Modeling Under-Dispersed Count Data by the Generalized Poisson Distribution via Two New MM Algorithms |
作者 | |
通讯作者 | Li, Shuang |
发表日期 | 2023-03-01
|
DOI | |
发表期刊 | |
EISSN | 2227-7390
|
卷号 | 11期号:6 |
摘要 | Under-dispersed count data often appear in clinical trials, medical studies, demography, actuarial science, ecology, biology, industry and engineering. Although the generalized Poisson (GP) distribution possesses the twin properties of under- and over-dispersion, in the past 50 years, many authors only treat the GP distribution as an alternative to the negative binomial distribution for modeling over-dispersed count data. To our best knowledge, the issues of calculating maximum likelihood estimates (MLEs) of parameters in GP model without covariates and with covariates for the case of under-dispersion were not solved up to now. In this paper, we first develop a new minimization-maximization (MM) algorithm to calculate the MLEs of parameters in the GP distribution with under-dispersion, and then we develop another new MM algorithm to compute the MLEs of the vector of regression coefficients for the GP mean regression model for the case of under-dispersion. Three hypothesis tests (i.e., the likelihood ratio, Wald and score tests) are provided. Some simulations are conducted. The Bangladesh demographic and health surveys dataset is analyzed to illustrate the proposed methods and comparisons with the existing Conway-Maxwell-Poisson regression model are also presented. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[12171225]
; Research Grants Council of Hong Kong[UGC/FDS14/P05/20]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics
|
WOS记录号 | WOS:000957724300001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/523992 |
专题 | 理学院_统计与数据科学系 理学院_数学系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Peoples R China 2.Hang Seng Univ Hong Kong, Dept Supply Chain & Informat Management, Shatin, Hong Kong, Peoples R China 3.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China |
第一作者单位 | 统计与数据科学系 |
通讯作者单位 | 数学系 |
第一作者的第一单位 | 统计与数据科学系 |
推荐引用方式 GB/T 7714 |
Li, Xun-Jian,Tian, Guo-Liang,Zhang, Mingqian,et al. Modeling Under-Dispersed Count Data by the Generalized Poisson Distribution via Two New MM Algorithms[J]. MATHEMATICS,2023,11(6).
|
APA |
Li, Xun-Jian,Tian, Guo-Liang,Zhang, Mingqian,Ho, George To Sum,&Li, Shuang.(2023).Modeling Under-Dispersed Count Data by the Generalized Poisson Distribution via Two New MM Algorithms.MATHEMATICS,11(6).
|
MLA |
Li, Xun-Jian,et al."Modeling Under-Dispersed Count Data by the Generalized Poisson Distribution via Two New MM Algorithms".MATHEMATICS 11.6(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论