中文版 | English
题名

Quantifying Continental Crust Thickness Using the Machine Learning Method

作者
通讯作者Yang, Ting
发表日期
2023-03-01
DOI
发表期刊
ISSN
2169-9313
EISSN
2169-9356
卷号128期号:3
摘要
Crustal thickness plays a key role in many geological processes. However, it remains challenging to quantify crustal thickness in the geological past. Here we propose an Extremely Randomized Trees algorithm-based machine learning model to recover crustal thickness of old geological regions. The model is trained using major oxide and trace element compositions of 1,480 young intermediate to felsic rocks from global arcs and collisional orogens and geophysical measurements of crustal thickness. The model provides better estimations of crustal thickness than the commonly used methods based on Sr/Y and (La/Yb)(N) when applied to the testing data. The validity of this model is further demonstrated by its applications to the Kohistan-Ladakh, Gangdese and Talkeetna arcs, where paleocrustal thicknesses have been well constrained. We then use this model to construct the Mesozoic crustal thickness evolution of the Erguna Block in the southeast of the Mongol-Okhotsk suture belt. The closure time of the suture zone is still debated. Our results suggest that the crustal thickness of the Erguna Block increased from 43 +/- 9 km at 210 Ma to 62 +/- 7 km at 180 Ma, remained constant between 180 and 150 Ma, and then thinned to 36 +/- 4 km at 120 Ma. These results suggest that the Mongol-Okhotsk Ocean closed in the Early-Middle Jurassic and the thickened crust was stretched during the Cretaceous. We show that the thick crust and compression-extension transition seem to be favorable for the formation of porphyry copper deposits in the Erguna Block during the Late Jurassic.
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China["42002046","41904088","42174105"] ; Guangdong Basic and Applied Basic Research Foundation[2021A1515011356]
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:000953059900001
出版者
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/524026
专题理学院_地球与空间科学系
作者单位
1.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Peoples R China
2.Southern Marine Sci & Engn Guangdong Lab Guangzhou, Guangzhou, Peoples R China
3.Southern Univ Sci & Technol, Guangdong Prov Key Lab Geophys High Resolut Imagin, Shenzhen, Peoples R China
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系;  南方科技大学
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Guo, Peng,Yang, Ting. Quantifying Continental Crust Thickness Using the Machine Learning Method[J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH,2023,128(3).
APA
Guo, Peng,&Yang, Ting.(2023).Quantifying Continental Crust Thickness Using the Machine Learning Method.JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH,128(3).
MLA
Guo, Peng,et al."Quantifying Continental Crust Thickness Using the Machine Learning Method".JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH 128.3(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Guo, Peng]的文章
[Yang, Ting]的文章
百度学术
百度学术中相似的文章
[Guo, Peng]的文章
[Yang, Ting]的文章
必应学术
必应学术中相似的文章
[Guo, Peng]的文章
[Yang, Ting]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。