题名 | Monolayer MoS2 Fabricated by In Situ Construction of Interlayer Electrostatic Repulsion Enables Ultrafast Ion Transport in Lithium-Ion Batteries |
作者 | |
通讯作者 | Zhao,Tianshou |
发表日期 | 2023-12-01
|
DOI | |
发表期刊 | |
ISSN | 2311-6706
|
EISSN | 2150-5551
|
卷号 | 15期号:1 |
摘要 | Highlights: In-situ construction of electrostatic repulsion between MoS interlayers is first proposed to successfully prepare Co-doped monolayer MoS under high vapor pressure.The doped Co atoms radically decrease bandgap and lithium ion diffusion energy barrier of monolayer MoS and can be transformed into ultrasmall Co nanoparticles (~2 nm) to induce strong surface-capacitance effect during conversion reaction.The Co doped monolayer MoS shows ultrafast ion transport capability along with ultrahigh capacity and outstanding cycling stability as lithium-ion-battery anodes. Abstract: High theoretical capacity and unique layered structures make MoS a promising lithium-ion battery anode material. However, the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS lead to unacceptable ion transport capability. Here, we propose in-situ construction of interlayer electrostatic repulsion caused by Co+ substituting Mo between MoS layers, which can break the limitation of interlayer van der Waals forces to fabricate monolayer MoS, thus establishing isotropic ion transport paths. Simultaneously, the doped Co atoms change the electronic structure of monolayer MoS, thus improving its intrinsic conductivity. Importantly, the doped Co atoms can be converted into Co nanoparticles to create a space charge region to accelerate ion transport. Hence, the Co-doped monolayer MoS shows ultrafast lithium ion transport capability in half/full cells. This work presents a novel route for the preparation of monolayer MoS and demonstrates its potential for application in fast-charging lithium-ion batteries.[MediaObject not available: see fulltext.] |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Shenzhen Key Laboratory of Advanced Energy Storage[ZDSYS20220401141000001]
; Research Grants Council of the Hong Kong Special Administrative Region, China[R6005-20]
|
WOS研究方向 | Science & Technology - Other Topics
; Materials Science
; Physics
|
WOS类目 | Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
; Physics, Applied
|
WOS记录号 | WOS:001034799100001
|
出版者 | |
EI入藏号 | 20231413843512
|
EI主题词 | Anodes
; Capacitance
; Charging (batteries)
; Cobalt
; Electronic structure
; Electrostatics
; Fabrication
; Ions
; Layered semiconductors
; Lithium-ion batteries
; Molybdenum compounds
; Monolayers
; Nanoparticles
; Sulfur compounds
; Surface reactions
; Van der Waals forces
|
EI分类号 | Nonferrous Metals and Alloys excluding Alkali and Alkaline Earth Metals:549.3
; Electricity: Basic Concepts and Phenomena:701.1
; Secondary Batteries:702.1.2
; Semiconducting Materials:712.1
; Electron Tubes:714.1
; Nanotechnology:761
; Physical Chemistry:801.4
; Chemical Reactions:802.2
; Atomic and Molecular Physics:931.3
; Solid State Physics:933
|
Scopus记录号 | 2-s2.0-85151432284
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:28
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/524077 |
专题 | 工学院_机械与能源工程系 工学院_碳中和能源研究院 |
作者单位 | Shenzhen Key Laboratory of Advanced Energy Storage,Department of Mechanical and Energy Engineering,SUSTech Energy Institute for Carbon Neutrality,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 机械与能源工程系; 碳中和能源研究院 |
通讯作者单位 | 机械与能源工程系; 碳中和能源研究院 |
第一作者的第一单位 | 机械与能源工程系; 碳中和能源研究院 |
推荐引用方式 GB/T 7714 |
Han,Meisheng,Mu,Yongbiao,Guo,Jincong,et al. Monolayer MoS2 Fabricated by In Situ Construction of Interlayer Electrostatic Repulsion Enables Ultrafast Ion Transport in Lithium-Ion Batteries[J]. Nano-Micro Letters,2023,15(1).
|
APA |
Han,Meisheng,Mu,Yongbiao,Guo,Jincong,Wei,Lei,Zeng,Lin,&Zhao,Tianshou.(2023).Monolayer MoS2 Fabricated by In Situ Construction of Interlayer Electrostatic Repulsion Enables Ultrafast Ion Transport in Lithium-Ion Batteries.Nano-Micro Letters,15(1).
|
MLA |
Han,Meisheng,et al."Monolayer MoS2 Fabricated by In Situ Construction of Interlayer Electrostatic Repulsion Enables Ultrafast Ion Transport in Lithium-Ion Batteries".Nano-Micro Letters 15.1(2023).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Nano-micro letters.p(8785KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论