中文版 | English
题名

Evolutionary algorithm with individual-distribution search strategy and regression-classification surrogates for expensive optimization

作者
通讯作者Wang,Zhenkun
发表日期
2023-07-01
DOI
发表期刊
ISSN
0020-0255
EISSN
1872-6291
卷号634页码:423-442
摘要
Surrogate-assisted evolutionary algorithms (SAEAs) with prescreening model management strategies show great potential in handling expensive optimization problems (EOPs). However, their performance is highly dependent on the search strategy and surrogate model. This paper proposes an evolutionary algorithm called IDRCEA, which utilizes an individual-distribution search strategy (IDS) and a regression-classification-based prescreening mechanism (RCP) to improve the ability to solve various complex and high-dimensional EOPs. Specifically, IDRCEA first combines an individual-based search strategy and a distribution-based search strategy to enrich offspring generation. Then, a regression model and a classification model are cooperatively used to prescreen the high-level offspring. Finally, both performance-based and distribution-based infill criteria are utilized to determine the most promising offspring from the high-level group for expensive evaluation. Experimental results validate the advantages of IDRCEA over some state-of-the-art SAEAs on many complex benchmark problems and an oil reservoir production optimization problem.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[62036006];National Natural Science Foundation of China[62106096];National Natural Science Foundation of China[62206120];
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems
WOS记录号
WOS:000965552200001
出版者
EI入藏号
20231313810872
EI主题词
Optimization ; Petroleum reservoir engineering ; Petroleum reservoirs ; Regression analysis
EI分类号
Oil Fields:512.1.1 ; Petroleum Deposits : Development Operations:512.1.2 ; Optimization Techniques:921.5 ; Mathematical Statistics:922.2
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85150871131
来源库
Scopus
引用统计
被引频次[WOS]:12
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/524101
专题工学院_系统设计与智能制造学院
工学院_计算机科学与工程系
作者单位
1.School of System Design and Intelligent Manufacturing,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Department of Mathematics and Statistics,Changsha University of Science and Technology,Changsha,410114,China
4.School of Electronic Engineering,Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education,Xidian University,Xi'an,710071,China
第一作者单位系统设计与智能制造学院
通讯作者单位系统设计与智能制造学院;  计算机科学与工程系
第一作者的第一单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Li,Genghui,Xie,Lindong,Wang,Zhenkun,et al. Evolutionary algorithm with individual-distribution search strategy and regression-classification surrogates for expensive optimization[J]. Information Sciences,2023,634:423-442.
APA
Li,Genghui,Xie,Lindong,Wang,Zhenkun,Wang,Huajun,&Gong,Maoguo.(2023).Evolutionary algorithm with individual-distribution search strategy and regression-classification surrogates for expensive optimization.Information Sciences,634,423-442.
MLA
Li,Genghui,et al."Evolutionary algorithm with individual-distribution search strategy and regression-classification surrogates for expensive optimization".Information Sciences 634(2023):423-442.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Genghui]的文章
[Xie,Lindong]的文章
[Wang,Zhenkun]的文章
百度学术
百度学术中相似的文章
[Li,Genghui]的文章
[Xie,Lindong]的文章
[Wang,Zhenkun]的文章
必应学术
必应学术中相似的文章
[Li,Genghui]的文章
[Xie,Lindong]的文章
[Wang,Zhenkun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。