题名 | Evolutionary algorithm with individual-distribution search strategy and regression-classification surrogates for expensive optimization |
作者 | |
通讯作者 | Wang,Zhenkun |
发表日期 | 2023-07-01
|
DOI | |
发表期刊 | |
ISSN | 0020-0255
|
EISSN | 1872-6291
|
卷号 | 634页码:423-442 |
摘要 | Surrogate-assisted evolutionary algorithms (SAEAs) with prescreening model management strategies show great potential in handling expensive optimization problems (EOPs). However, their performance is highly dependent on the search strategy and surrogate model. This paper proposes an evolutionary algorithm called IDRCEA, which utilizes an individual-distribution search strategy (IDS) and a regression-classification-based prescreening mechanism (RCP) to improve the ability to solve various complex and high-dimensional EOPs. Specifically, IDRCEA first combines an individual-based search strategy and a distribution-based search strategy to enrich offspring generation. Then, a regression model and a classification model are cooperatively used to prescreen the high-level offspring. Finally, both performance-based and distribution-based infill criteria are utilized to determine the most promising offspring from the high-level group for expensive evaluation. Experimental results validate the advantages of IDRCEA over some state-of-the-art SAEAs on many complex benchmark problems and an oil reservoir production optimization problem. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[62036006];National Natural Science Foundation of China[62106096];National Natural Science Foundation of China[62206120];
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Information Systems
|
WOS记录号 | WOS:000965552200001
|
出版者 | |
EI入藏号 | 20231313810872
|
EI主题词 | Optimization
; Petroleum reservoir engineering
; Petroleum reservoirs
; Regression analysis
|
EI分类号 | Oil Fields:512.1.1
; Petroleum Deposits : Development Operations:512.1.2
; Optimization Techniques:921.5
; Mathematical Statistics:922.2
|
ESI学科分类 | COMPUTER SCIENCE
|
Scopus记录号 | 2-s2.0-85150871131
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:12
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/524101 |
专题 | 工学院_系统设计与智能制造学院 工学院_计算机科学与工程系 |
作者单位 | 1.School of System Design and Intelligent Manufacturing,Southern University of Science and Technology,Shenzhen,518055,China 2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 3.Department of Mathematics and Statistics,Changsha University of Science and Technology,Changsha,410114,China 4.School of Electronic Engineering,Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education,Xidian University,Xi'an,710071,China |
第一作者单位 | 系统设计与智能制造学院 |
通讯作者单位 | 系统设计与智能制造学院; 计算机科学与工程系 |
第一作者的第一单位 | 系统设计与智能制造学院 |
推荐引用方式 GB/T 7714 |
Li,Genghui,Xie,Lindong,Wang,Zhenkun,et al. Evolutionary algorithm with individual-distribution search strategy and regression-classification surrogates for expensive optimization[J]. Information Sciences,2023,634:423-442.
|
APA |
Li,Genghui,Xie,Lindong,Wang,Zhenkun,Wang,Huajun,&Gong,Maoguo.(2023).Evolutionary algorithm with individual-distribution search strategy and regression-classification surrogates for expensive optimization.Information Sciences,634,423-442.
|
MLA |
Li,Genghui,et al."Evolutionary algorithm with individual-distribution search strategy and regression-classification surrogates for expensive optimization".Information Sciences 634(2023):423-442.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论