中文版 | English
题名

Artificial-neural-network-based nonlinear algebraic models for large-eddy simulation of compressible wall-bounded turbulence

作者
通讯作者Wang,Jianchun
发表日期
2023-04-10
DOI
发表期刊
ISSN
0022-1120
EISSN
1469-7645
卷号960
摘要
In this paper, we propose artificial-neural-network-based (ANN-based) nonlinear algebraic models for the large-eddy simulation (LES) of compressible wall-bounded turbulence. An innovative modification is applied to the invariants and the tensor bases of the nonlinear algebraic models through using the local grid widths along each direction to normalise the corresponding gradients of the flow variables. Furthermore, the dimensionless model coefficients are determined by the ANN method. The modified ANN-based nonlinear algebraic model (MANA model) has much higher correlation coefficients and much lower relative errors than the dynamic Smagorinsky model (DSM), Vreman model and wall-adapting local eddy-viscosity model in the a priori test. The significantly more accurate estimations of the mean subgrid-scale (SGS) fluxes of the kinetic energy and temperature variance are also obtained by the MANA models in the a priori test. Furthermore, in the a posteriori test, the MANA model can give much more accurate predictions of the flow statistics and the mean SGS fluxes of the kinetic energy and the temperature variance than other traditional eddy-viscosity models in compressible turbulent channel flows with untrained Reynolds numbers, Mach numbers and grid resolutions. The MANA model has a better performance in predicting the flow statistics in supersonic turbulent boundary layer. The MANA model can well predict both direct and inverse transfer of the kinetic energy and temperature variance, which overcomes the inherent shortcoming that the traditional eddy-viscosity models cannot predict the inverse energy transfer. Moreover, the MANA model is computationally more efficient than the DSM.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
NSFC Basic Science Center Program[11988102] ; National Natural Science Foundation of China (NSFC)["91952104","92052301","12172161","91752201"] ; Technology and Innovation Commission of Shenzhen Municipality["KQTD20180411143441009","JCYJ20170412151759222"] ; Department of Science and Technology of Guangdong Province[2019B21203001]
WOS研究方向
Mechanics ; Physics
WOS类目
Mechanics ; Physics, Fluids & Plasmas
WOS记录号
WOS:000960160100001
出版者
EI入藏号
20231413858257
EI主题词
Algebra ; Atmospheric thermodynamics ; Boundary layer flow ; Boundary layers ; Channel flow ; Energy transfer ; Forecasting ; Kinetics ; Large eddy simulation ; Machine learning ; Neural networks ; Reynolds number ; Turbulence ; Turbulent flow ; Viscosity
EI分类号
Atmospheric Properties:443.1 ; Fluid Flow:631 ; Fluid Flow, General:631.1 ; Thermodynamics:641.1 ; Artificial Intelligence:723.4 ; Mathematics:921 ; Algebra:921.1 ; Classical Physics; Quantum Theory; Relativity:931 ; Physical Properties of Gases, Liquids and Solids:931.2
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85151509921
来源库
Scopus
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/524162
专题工学院_力学与航空航天工程系
作者单位
1.State Key Laboratory of Turbulence and Complex Systems,College of Engineering,Peking University,Beijing,100871,China
2.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Laboratory of High Temperature Gas Dynamics,Institute of Mechanics,Chinese Academy of Sciences,Beijing,100190,China
4.Eastern Institute for Advanced Study,Ningbo,315200,China
通讯作者单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Xu,Dehao,Wang,Jianchun,Yu,Changping,et al. Artificial-neural-network-based nonlinear algebraic models for large-eddy simulation of compressible wall-bounded turbulence[J]. Journal of Fluid Mechanics,2023,960.
APA
Xu,Dehao,Wang,Jianchun,Yu,Changping,&Chen,Shiyi.(2023).Artificial-neural-network-based nonlinear algebraic models for large-eddy simulation of compressible wall-bounded turbulence.Journal of Fluid Mechanics,960.
MLA
Xu,Dehao,et al."Artificial-neural-network-based nonlinear algebraic models for large-eddy simulation of compressible wall-bounded turbulence".Journal of Fluid Mechanics 960(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu,Dehao]的文章
[Wang,Jianchun]的文章
[Yu,Changping]的文章
百度学术
百度学术中相似的文章
[Xu,Dehao]的文章
[Wang,Jianchun]的文章
[Yu,Changping]的文章
必应学术
必应学术中相似的文章
[Xu,Dehao]的文章
[Wang,Jianchun]的文章
[Yu,Changping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。