中文版 | English
题名

Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging

作者
通讯作者Li,Yiming
发表日期
2023-03-01
DOI
发表期刊
ISSN
1548-7091
EISSN
1548-7105
卷号20期号:3页码:459-468
摘要

Single-molecule localization microscopy in a typical wide-field setup has been widely used for investigating subcellular structures with super resolution; however, field-dependent aberrations restrict the field of view (FOV) to only tens of micrometers. Here, we present a deep-learning method for precise localization of spatially variant point emitters (FD-DeepLoc) over a large FOV covering the full chip of a modern sCMOS camera. Using a graphic processing unit-based vectorial point spread function (PSF) fitter, we can fast and accurately model the spatially variant PSF of a high numerical aperture objective in the entire FOV. Combined with deformable mirror-based optimal PSF engineering, we demonstrate high-accuracy three-dimensional single-molecule localization microscopy over a volume of ~180 × 180 × 5 μm, allowing us to image mitochondria and nuclear pore complexes in entire cells in a single imaging cycle without hardware scanning; a 100-fold increase in throughput compared to the state of the art.

相关链接[Scopus记录]
收录类别
语种
英语
重要成果
NI论文
学校署名
第一 ; 通讯
资助项目
Natural Science Foundation of Guangdong Province[2020A1515110380] ; Department of Science and Technology of Shandong Province[2021CXGC010212] ; Science, Technology and Innovation Commission of Shenzhen Municipality[KQTD20200820113012029] ; Science, Technology and Innovation Commission of Shenzhen Municipality[KQTD20210811090115021]
WOS研究方向
Biochemistry & Molecular Biology
WOS类目
Biochemical Research Methods
WOS记录号
WOS:000938169100007
出版者
ESI学科分类
BIOLOGY & BIOCHEMISTRY
Scopus记录号
2-s2.0-85148581207
来源库
Scopus
引用统计
被引频次[WOS]:31
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/524210
专题工学院_生物医学工程系
生命科学学院
作者单位
1.Guangdong Provincial Key Laboratory of Advanced Biomaterials,Department of Biomedical Engineering,Southern University of Science and Technology,Shenzhen,China
2.School of Life Sciences,Southern University of Science and Technology,Shenzhen,China
3.Key Laboratory of Biomedical Engineering of Hainan Province,School of Biomedical Engineering,Hainan University,Haikou,China
4.European Molecular Biology Laboratory,Cell Biology and Biophysics,Heidelberg,Germany
5.Department of Biomedical Engineering,College of Future Technology,Peking University,Beijing,China
6.Institute for Biomedical Materials and Devices (IBMD),Faculty of Science,University of Technology Sydney,Sydney,Australia
第一作者单位生物医学工程系
通讯作者单位生物医学工程系
第一作者的第一单位生物医学工程系
推荐引用方式
GB/T 7714
Fu,Shuang,Shi,Wei,Luo,Tingdan,et al. Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging[J]. Nature Methods,2023,20(3):459-468.
APA
Fu,Shuang.,Shi,Wei.,Luo,Tingdan.,He,Yingchuan.,Zhou,Lulu.,...&Li,Yiming.(2023).Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging.Nature Methods,20(3),459-468.
MLA
Fu,Shuang,et al."Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging".Nature Methods 20.3(2023):459-468.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2023 Nature Methods (6939KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fu,Shuang]的文章
[Shi,Wei]的文章
[Luo,Tingdan]的文章
百度学术
百度学术中相似的文章
[Fu,Shuang]的文章
[Shi,Wei]的文章
[Luo,Tingdan]的文章
必应学术
必应学术中相似的文章
[Fu,Shuang]的文章
[Shi,Wei]的文章
[Luo,Tingdan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。