题名 | Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging |
作者 | |
通讯作者 | Li,Yiming |
发表日期 | 2023-03-01
|
DOI | |
发表期刊 | |
ISSN | 1548-7091
|
EISSN | 1548-7105
|
卷号 | 20期号:3页码:459-468 |
摘要 | Single-molecule localization microscopy in a typical wide-field setup has been widely used for investigating subcellular structures with super resolution; however, field-dependent aberrations restrict the field of view (FOV) to only tens of micrometers. Here, we present a deep-learning method for precise localization of spatially variant point emitters (FD-DeepLoc) over a large FOV covering the full chip of a modern sCMOS camera. Using a graphic processing unit-based vectorial point spread function (PSF) fitter, we can fast and accurately model the spatially variant PSF of a high numerical aperture objective in the entire FOV. Combined with deformable mirror-based optimal PSF engineering, we demonstrate high-accuracy three-dimensional single-molecule localization microscopy over a volume of ~180 × 180 × 5 μm, allowing us to image mitochondria and nuclear pore complexes in entire cells in a single imaging cycle without hardware scanning; a 100-fold increase in throughput compared to the state of the art. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI论文
|
学校署名 | 第一
; 通讯
|
资助项目 | Natural Science Foundation of Guangdong Province[2020A1515110380]
; Department of Science and Technology of Shandong Province[2021CXGC010212]
; Science, Technology and Innovation Commission of Shenzhen Municipality[KQTD20200820113012029]
; Science, Technology and Innovation Commission of Shenzhen Municipality[KQTD20210811090115021]
|
WOS研究方向 | Biochemistry & Molecular Biology
|
WOS类目 | Biochemical Research Methods
|
WOS记录号 | WOS:000938169100007
|
出版者 | |
ESI学科分类 | BIOLOGY & BIOCHEMISTRY
|
Scopus记录号 | 2-s2.0-85148581207
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:31
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/524210 |
专题 | 工学院_生物医学工程系 生命科学学院 |
作者单位 | 1.Guangdong Provincial Key Laboratory of Advanced Biomaterials,Department of Biomedical Engineering,Southern University of Science and Technology,Shenzhen,China 2.School of Life Sciences,Southern University of Science and Technology,Shenzhen,China 3.Key Laboratory of Biomedical Engineering of Hainan Province,School of Biomedical Engineering,Hainan University,Haikou,China 4.European Molecular Biology Laboratory,Cell Biology and Biophysics,Heidelberg,Germany 5.Department of Biomedical Engineering,College of Future Technology,Peking University,Beijing,China 6.Institute for Biomedical Materials and Devices (IBMD),Faculty of Science,University of Technology Sydney,Sydney,Australia |
第一作者单位 | 生物医学工程系 |
通讯作者单位 | 生物医学工程系 |
第一作者的第一单位 | 生物医学工程系 |
推荐引用方式 GB/T 7714 |
Fu,Shuang,Shi,Wei,Luo,Tingdan,et al. Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging[J]. Nature Methods,2023,20(3):459-468.
|
APA |
Fu,Shuang.,Shi,Wei.,Luo,Tingdan.,He,Yingchuan.,Zhou,Lulu.,...&Li,Yiming.(2023).Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging.Nature Methods,20(3),459-468.
|
MLA |
Fu,Shuang,et al."Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging".Nature Methods 20.3(2023):459-468.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
2023 Nature Methods (6939KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论