题名 | Application of Machine-Learning Assisted Dynamics Simulations in Nano-Scale Catalysis 机器学习辅助的纳米催化反应动力学研究进展 |
作者 | |
通讯作者 | Li,Lei |
发表日期 | 2023-02-01
|
DOI | |
发表期刊 | |
ISSN | 0454-5648
|
卷号 | 51期号:2页码:510-519 |
摘要 | As one of the important simulation methods in computational catalysis, molecular dynamics (MD) simulation plays an important role in understanding the catalytic mechanisms and is critical to the design of efficient and stable catalysts. Classical MD simulation with empirical potentials has a high computational efficiency but a limited accuracy, particularly for systems involving chemical reactions, and the accurate first-principle methods suffer from heavy computational costs and become unaffordable in most cases. The existing emerging machine-learning force field (MLFF) method is proven with affordable computational cost and first-principle-level accuracy. MLFF-assisted MD simulation can offer an effective approach for dynamics simulation in nanoscale catalysis. This review represented the fundamental principle of two main MLFF methods, i.e., the Behler-Parrinello atom-centered neural network method and the embedded-network-based deep potential. The applications of MLFF-assisted dynamic studies related to nano-scale catalysis (i.e., structure reconstruction and reaction processes in catalysis) were described. In addition, some possible future challenges of MLFF methods in dynamics simulation were also given. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 中文
|
学校署名 | 第一
; 通讯
|
EI入藏号 | 20231513886078
|
EI主题词 | Catalysis
; Computational chemistry
; Computational efficiency
; Machine learning
; Nanotechnology
; Reaction kinetics
|
EI分类号 | Artificial Intelligence:723.4
; Nanotechnology:761
; Chemistry:801
; Physical Chemistry:801.4
; Chemical Reactions:802.2
; Numerical Methods:921.6
|
Scopus记录号 | 2-s2.0-85152211848
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/524213 |
专题 | 工学院_材料科学与工程系 |
作者单位 | Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM),Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China |
第一作者单位 | 材料科学与工程系 |
通讯作者单位 | 材料科学与工程系 |
第一作者的第一单位 | 材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Lin,Bo,Zhang,Shuangzhe,Li,Bai,等. Application of Machine-Learning Assisted Dynamics Simulations in Nano-Scale Catalysis 机器学习辅助的纳米催化反应动力学研究进展[J]. Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society,2023,51(2):510-519.
|
APA |
Lin,Bo,Zhang,Shuangzhe,Li,Bai,Zhou,Chuan,&Li,Lei.(2023).Application of Machine-Learning Assisted Dynamics Simulations in Nano-Scale Catalysis 机器学习辅助的纳米催化反应动力学研究进展.Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society,51(2),510-519.
|
MLA |
Lin,Bo,et al."Application of Machine-Learning Assisted Dynamics Simulations in Nano-Scale Catalysis 机器学习辅助的纳米催化反应动力学研究进展".Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society 51.2(2023):510-519.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论