中文版 | English
题名

Application of Machine-Learning Assisted Dynamics Simulations in Nano-Scale Catalysis 机器学习辅助的纳米催化反应动力学研究进展

作者
通讯作者Li,Lei
发表日期
2023-02-01
DOI
发表期刊
ISSN
0454-5648
卷号51期号:2页码:510-519
摘要
As one of the important simulation methods in computational catalysis, molecular dynamics (MD) simulation plays an important role in understanding the catalytic mechanisms and is critical to the design of efficient and stable catalysts. Classical MD simulation with empirical potentials has a high computational efficiency but a limited accuracy, particularly for systems involving chemical reactions, and the accurate first-principle methods suffer from heavy computational costs and become unaffordable in most cases. The existing emerging machine-learning force field (MLFF) method is proven with affordable computational cost and first-principle-level accuracy. MLFF-assisted MD simulation can offer an effective approach for dynamics simulation in nanoscale catalysis. This review represented the fundamental principle of two main MLFF methods, i.e., the Behler-Parrinello atom-centered neural network method and the embedded-network-based deep potential. The applications of MLFF-assisted dynamic studies related to nano-scale catalysis (i.e., structure reconstruction and reaction processes in catalysis) were described. In addition, some possible future challenges of MLFF methods in dynamics simulation were also given.
关键词
相关链接[Scopus记录]
收录类别
语种
中文
学校署名
第一 ; 通讯
EI入藏号
20231513886078
EI主题词
Catalysis ; Computational chemistry ; Computational efficiency ; Machine learning ; Nanotechnology ; Reaction kinetics
EI分类号
Artificial Intelligence:723.4 ; Nanotechnology:761 ; Chemistry:801 ; Physical Chemistry:801.4 ; Chemical Reactions:802.2 ; Numerical Methods:921.6
Scopus记录号
2-s2.0-85152211848
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/524213
专题工学院_材料科学与工程系
作者单位
Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM),Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
第一作者单位材料科学与工程系
通讯作者单位材料科学与工程系
第一作者的第一单位材料科学与工程系
推荐引用方式
GB/T 7714
Lin,Bo,Zhang,Shuangzhe,Li,Bai,等. Application of Machine-Learning Assisted Dynamics Simulations in Nano-Scale Catalysis 机器学习辅助的纳米催化反应动力学研究进展[J]. Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society,2023,51(2):510-519.
APA
Lin,Bo,Zhang,Shuangzhe,Li,Bai,Zhou,Chuan,&Li,Lei.(2023).Application of Machine-Learning Assisted Dynamics Simulations in Nano-Scale Catalysis 机器学习辅助的纳米催化反应动力学研究进展.Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society,51(2),510-519.
MLA
Lin,Bo,et al."Application of Machine-Learning Assisted Dynamics Simulations in Nano-Scale Catalysis 机器学习辅助的纳米催化反应动力学研究进展".Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society 51.2(2023):510-519.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lin,Bo]的文章
[Zhang,Shuangzhe]的文章
[Li,Bai]的文章
百度学术
百度学术中相似的文章
[Lin,Bo]的文章
[Zhang,Shuangzhe]的文章
[Li,Bai]的文章
必应学术
必应学术中相似的文章
[Lin,Bo]的文章
[Zhang,Shuangzhe]的文章
[Li,Bai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。