题名 | Vision transformer-based weakly supervised histopathological image analysis of primary brain tumors |
作者 | Li,Zhongxiao1,2; Cong,Yuwei3; Chen,Xin4; Qi,Jiping3 ![]() ![]() ![]() ![]() ![]() ![]() |
通讯作者 | Qi,Jiping; Carin,Lawrence; Chen,Yupeng; Zhao,Shiguang; Gao,Xin |
发表日期 | 2023-01-20
|
DOI | |
发表期刊 | |
EISSN | 2589-0042
|
卷号 | 26期号:1 |
摘要 | Diagnosis of primary brain tumors relies heavily on histopathology. Although various computational pathology methods have been developed for automated diagnosis of primary brain tumors, they usually require neuropathologists’ annotation of region of interests or selection of image patches on whole-slide images (WSI). We developed an end-to-end Vision Transformer (ViT) – based deep learning architecture for brain tumor WSI analysis, yielding a highly interpretable deep-learning model, ViT-WSI. Based on the principle of weakly supervised machine learning, ViT-WSI accomplishes the task of major primary brain tumor type and subtype classification. Using a systematic gradient-based attribution analysis procedure, ViT-WSI can discover diagnostic histopathological features for primary brain tumors. Furthermore, we demonstrated that ViT-WSI has high predictive power of inferring the status of three diagnostic glioma molecular markers, IDH1 mutation, p53 mutation, and MGMT methylation, directly from H&E-stained histopathological images, with patient level AUC scores of 0.960, 0.874, and 0.845, respectively. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Office of Research Admin- istration (ORA) at KAUST["FCC/1/1976-44-01","FCC/1/1976-45-01","URF/1/4098-01- 01","URF/1/4352-01-01","REI/1/5202-01-01","REI/1/4940-01-01","RGC/3/4816-01-01","REI/1/0018-01-01"]
|
WOS研究方向 | Science & Technology - Other Topics
|
WOS类目 | Multidisciplinary Sciences
|
WOS记录号 | WOS:000996422200001
|
出版者 | |
Scopus记录号 | 2-s2.0-85146042593
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:19
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/524221 |
专题 | 工学院_深港微电子学院 |
作者单位 | 1.Computer Science Program,Computer,Electrical and Mathematical Sciences and Engineering (CEMSE) Division,King Abdullah University of Science and Technology (KAUST),Thuwal,23955-6900,Saudi Arabia 2.KAUST Computational Bioscience Research Center (CBRC),King Abdullah University of Science and Technology (KAUST),Thuwal,23955-6900,Saudi Arabia 3.Department of Pathology,The First Affiliated Hospital of Harbin Medical University,Nangang District,23 Youzheng Street, Harbin,150001,China 4.Department of Neurosurgery,The First Affiliated Hospital of Harbin Medical University,Harbin,Heilongjiang Province,150001,China 5.Suffolk University,Boston,United States 6.Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology,Monash University,Melbourne,3800,Australia 7.Monash Data Futures Institute,Monash University,Melbourne,3800,Australia 8.School of Microelectronics,Southern University of Science and Technology,Shenzhen,518055,China 9.Department of Neurosurgery,Shenzhen University General Hospital,Shenzhen,Guangdong Province,518100,China |
通讯作者单位 | 深港微电子学院 |
推荐引用方式 GB/T 7714 |
Li,Zhongxiao,Cong,Yuwei,Chen,Xin,et al. Vision transformer-based weakly supervised histopathological image analysis of primary brain tumors[J]. iScience,2023,26(1).
|
APA |
Li,Zhongxiao.,Cong,Yuwei.,Chen,Xin.,Qi,Jiping.,Sun,Jingxian.,...&Gao,Xin.(2023).Vision transformer-based weakly supervised histopathological image analysis of primary brain tumors.iScience,26(1).
|
MLA |
Li,Zhongxiao,et al."Vision transformer-based weakly supervised histopathological image analysis of primary brain tumors".iScience 26.1(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论