题名 | Large-Scale Bandwidth and Power Optimization for Multi-Modal Edge Intelligence Autonomous Driving |
作者 | |
发表日期 | 2023
|
DOI | |
发表期刊 | |
ISSN | 2162-2337
|
EISSN | 2162-2345
|
卷号 | PP期号:99页码:1-1 |
摘要 | Edge intelligence autonomous driving (EIAD) offers computing resources in autonomous vehicles for training deep neural networks. However, wireless channels between the edge server and the autonomous vehicles are time-varying due to the high-mobility of vehicles. Moreover, the required number of training samples for different data modalities, e.g., images, point-clouds, is diverse. Consequently, when collecting these datasets from vehicles to the edge server, the associated bandwidth and power allocation across all data frames is a large-scale multi-modal optimization problem. This article proposes a highly computationally efficient algorithm that directly maximizes the quality of training (QoT). The key ingredients include a data-driven model for quantifying the priority of data modality and two first-order methods termed accelerated gradient projection and dual decomposition for low-complexity resource allocation. Finally, high-fidelity simulations in Car Learning to Act (CARLA) show that the proposed algorithm reduces the perception error by 3% and the computation time by 98%. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
资助项目 | Guangdong Basic and Applied Basic Research Foundation["2019B1515130003","2021B1515120008","2021B1515120067","2022A1515010109"]
; National Natural Science Foundation of China[62001310]
|
WOS研究方向 | Computer Science
; Engineering
; Telecommunications
|
WOS类目 | Computer Science, Information Systems
; Engineering, Electrical & Electronic
; Telecommunications
|
WOS记录号 | WOS:001006038300033
|
出版者 | |
EI入藏号 | 20231413849268
|
EI主题词 | Bandwidth
; Computing power
; Deep neural networks
; Job analysis
; Large dataset
; Resource allocation
|
EI分类号 | Highway Transportation:432
; Ergonomics and Human Factors Engineering:461.4
; Information Theory and Signal Processing:716.1
; Computer Peripheral Equipment:722.2
; Digital Computers and Systems:722.4
; Computer Software, Data Handling and Applications:723
; Data Processing and Image Processing:723.2
; Robot Applications:731.6
; Management:912.2
|
Scopus记录号 | 2-s2.0-85151572965
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10084349 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/524260 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China 2.College of Information Science and Technology, Jinan University, Guangzhou, China 3.Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 4.Shenzhen Research Institute of Big Data, Shenzhen, China 5.School of Science and Engineering, The Chinese University of Hong Kong Shenzhen and Shenzhen Research Institute of Big Data, China |
第一作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Li,Xinrao,Zhang,Tong,Wang,Shuai,et al. Large-Scale Bandwidth and Power Optimization for Multi-Modal Edge Intelligence Autonomous Driving[J]. IEEE Wireless Communications Letters,2023,PP(99):1-1.
|
APA |
Li,Xinrao,Zhang,Tong,Wang,Shuai,Zhu,Guangxu,Wang,Rui,&Chang,Tsung Hui.(2023).Large-Scale Bandwidth and Power Optimization for Multi-Modal Edge Intelligence Autonomous Driving.IEEE Wireless Communications Letters,PP(99),1-1.
|
MLA |
Li,Xinrao,et al."Large-Scale Bandwidth and Power Optimization for Multi-Modal Edge Intelligence Autonomous Driving".IEEE Wireless Communications Letters PP.99(2023):1-1.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论