中文版 | English
题名

Large-Scale Bandwidth and Power Optimization for Multi-Modal Edge Intelligence Autonomous Driving

作者
发表日期
2023
DOI
发表期刊
ISSN
2162-2337
EISSN
2162-2345
卷号PP期号:99页码:1-1
摘要
Edge intelligence autonomous driving (EIAD) offers computing resources in autonomous vehicles for training deep neural networks. However, wireless channels between the edge server and the autonomous vehicles are time-varying due to the high-mobility of vehicles. Moreover, the required number of training samples for different data modalities, e.g., images, point-clouds, is diverse. Consequently, when collecting these datasets from vehicles to the edge server, the associated bandwidth and power allocation across all data frames is a large-scale multi-modal optimization problem. This article proposes a highly computationally efficient algorithm that directly maximizes the quality of training (QoT). The key ingredients include a data-driven model for quantifying the priority of data modality and two first-order methods termed accelerated gradient projection and dual decomposition for low-complexity resource allocation. Finally, high-fidelity simulations in Car Learning to Act (CARLA) show that the proposed algorithm reduces the perception error by 3% and the computation time by 98%.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
Guangdong Basic and Applied Basic Research Foundation["2019B1515130003","2021B1515120008","2021B1515120067","2022A1515010109"] ; National Natural Science Foundation of China[62001310]
WOS研究方向
Computer Science ; Engineering ; Telecommunications
WOS类目
Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:001006038300033
出版者
EI入藏号
20231413849268
EI主题词
Bandwidth ; Computing power ; Deep neural networks ; Job analysis ; Large dataset ; Resource allocation
EI分类号
Highway Transportation:432 ; Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1 ; Computer Peripheral Equipment:722.2 ; Digital Computers and Systems:722.4 ; Computer Software, Data Handling and Applications:723 ; Data Processing and Image Processing:723.2 ; Robot Applications:731.6 ; Management:912.2
Scopus记录号
2-s2.0-85151572965
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10084349
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/524260
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
2.College of Information Science and Technology, Jinan University, Guangzhou, China
3.Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
4.Shenzhen Research Institute of Big Data, Shenzhen, China
5.School of Science and Engineering, The Chinese University of Hong Kong Shenzhen and Shenzhen Research Institute of Big Data, China
第一作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Li,Xinrao,Zhang,Tong,Wang,Shuai,et al. Large-Scale Bandwidth and Power Optimization for Multi-Modal Edge Intelligence Autonomous Driving[J]. IEEE Wireless Communications Letters,2023,PP(99):1-1.
APA
Li,Xinrao,Zhang,Tong,Wang,Shuai,Zhu,Guangxu,Wang,Rui,&Chang,Tsung Hui.(2023).Large-Scale Bandwidth and Power Optimization for Multi-Modal Edge Intelligence Autonomous Driving.IEEE Wireless Communications Letters,PP(99),1-1.
MLA
Li,Xinrao,et al."Large-Scale Bandwidth and Power Optimization for Multi-Modal Edge Intelligence Autonomous Driving".IEEE Wireless Communications Letters PP.99(2023):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Xinrao]的文章
[Zhang,Tong]的文章
[Wang,Shuai]的文章
百度学术
百度学术中相似的文章
[Li,Xinrao]的文章
[Zhang,Tong]的文章
[Wang,Shuai]的文章
必应学术
必应学术中相似的文章
[Li,Xinrao]的文章
[Zhang,Tong]的文章
[Wang,Shuai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。