中文版 | English
题名

Fourier Channel Attention Powered Lightweight Network for Image Segmentation

作者
发表日期
2023
DOI
发表期刊
ISSN
2168-2372
EISSN
2168-2372
卷号11页码:252-260
摘要
The accuracy of image segmentation is critical for quantitative analysis. We report a lightweight network FRUNet based on the U-Net, which combines the advantages of Fourier channel attention (FCA Block) and Residual unit to improve the accuracy. FCA Block automatically assigns the weight of the learned frequency information to the spatial domain, paying more attention to the precise high-frequency information of diverse biomedical images. While FCA is widely used in image super-resolution with residual network backbones, its role in semantic segmentation is less explored. Here we study the combination of FCA and U-Net, the skip connection of which can fuse the encoder information with the decoder. Extensive experimental results of FRUNet on three public datasets show that the method outperforms other advanced medical image segmentation methods in terms of using fewer network parameters and improved accuracy. It excels in pathological section segmentation of nuclei and glands.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
WOS记录号
WOS:000970501700001
EI入藏号
20231413850682
EI主题词
Convolution ; Data mining ; Fourier transforms ; Frequency domain analysis ; Image analysis ; Image enhancement ; Medical imaging ; Neural networks ; Semantic Segmentation ; Semantics
EI分类号
Biomedical Engineering:461.1 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Imaging Techniques:746 ; Mathematical Transformations:921.3
Scopus记录号
2-s2.0-85151537522
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10086528
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/524264
专题工学院_生物医学工程系
作者单位
Department of Biomedical Engineering, UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, China
第一作者单位生物医学工程系
第一作者的第一单位生物医学工程系
推荐引用方式
GB/T 7714
Zou,Fu,Liu,Yuanhua,Chen,Zelyu,et al. Fourier Channel Attention Powered Lightweight Network for Image Segmentation[J]. IEEE Journal of Translational Engineering in Health and Medicine,2023,11:252-260.
APA
Zou,Fu,Liu,Yuanhua,Chen,Zelyu,Zhanghao,Karl,&Jin,Dayong.(2023).Fourier Channel Attention Powered Lightweight Network for Image Segmentation.IEEE Journal of Translational Engineering in Health and Medicine,11,252-260.
MLA
Zou,Fu,et al."Fourier Channel Attention Powered Lightweight Network for Image Segmentation".IEEE Journal of Translational Engineering in Health and Medicine 11(2023):252-260.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zou,Fu]的文章
[Liu,Yuanhua]的文章
[Chen,Zelyu]的文章
百度学术
百度学术中相似的文章
[Zou,Fu]的文章
[Liu,Yuanhua]的文章
[Chen,Zelyu]的文章
必应学术
必应学术中相似的文章
[Zou,Fu]的文章
[Liu,Yuanhua]的文章
[Chen,Zelyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。