题名 | Fourier Channel Attention Powered Lightweight Network for Image Segmentation |
作者 | |
发表日期 | 2023
|
DOI | |
发表期刊 | |
ISSN | 2168-2372
|
EISSN | 2168-2372
|
卷号 | 11页码:252-260 |
摘要 | The accuracy of image segmentation is critical for quantitative analysis. We report a lightweight network FRUNet based on the U-Net, which combines the advantages of Fourier channel attention (FCA Block) and Residual unit to improve the accuracy. FCA Block automatically assigns the weight of the learned frequency information to the spatial domain, paying more attention to the precise high-frequency information of diverse biomedical images. While FCA is widely used in image super-resolution with residual network backbones, its role in semantic segmentation is less explored. Here we study the combination of FCA and U-Net, the skip connection of which can fuse the encoder information with the decoder. Extensive experimental results of FRUNet on three public datasets show that the method outperforms other advanced medical image segmentation methods in terms of using fewer network parameters and improved accuracy. It excels in pathological section segmentation of nuclei and glands. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
WOS记录号 | WOS:000970501700001
|
EI入藏号 | 20231413850682
|
EI主题词 | Convolution
; Data mining
; Fourier transforms
; Frequency domain analysis
; Image analysis
; Image enhancement
; Medical imaging
; Neural networks
; Semantic Segmentation
; Semantics
|
EI分类号 | Biomedical Engineering:461.1
; Information Theory and Signal Processing:716.1
; Data Processing and Image Processing:723.2
; Artificial Intelligence:723.4
; Imaging Techniques:746
; Mathematical Transformations:921.3
|
Scopus记录号 | 2-s2.0-85151537522
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10086528 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/524264 |
专题 | 工学院_生物医学工程系 |
作者单位 | Department of Biomedical Engineering, UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, China |
第一作者单位 | 生物医学工程系 |
第一作者的第一单位 | 生物医学工程系 |
推荐引用方式 GB/T 7714 |
Zou,Fu,Liu,Yuanhua,Chen,Zelyu,et al. Fourier Channel Attention Powered Lightweight Network for Image Segmentation[J]. IEEE Journal of Translational Engineering in Health and Medicine,2023,11:252-260.
|
APA |
Zou,Fu,Liu,Yuanhua,Chen,Zelyu,Zhanghao,Karl,&Jin,Dayong.(2023).Fourier Channel Attention Powered Lightweight Network for Image Segmentation.IEEE Journal of Translational Engineering in Health and Medicine,11,252-260.
|
MLA |
Zou,Fu,et al."Fourier Channel Attention Powered Lightweight Network for Image Segmentation".IEEE Journal of Translational Engineering in Health and Medicine 11(2023):252-260.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论