中文版 | English
题名

Efficient Dynamic Distributed Resource Slicing in 6G Multi-Access Edge Computing Networks with Online ADMM and Message Passing Graph Neural Networks

作者
发表日期
2023
DOI
发表期刊
ISSN
1536-1233
EISSN
1558-0660
卷号PP期号:99页码:1-18
摘要
We consider the problem of resource slicing in the 6 generation multi-access edge computing (6G-MEC) network. The network includes many non-stationary space-air-ground-sea nodes with dynamic, unstable connections and resources, where any node can be in one of two hidden states: i) reliable – when the node generates/propagates no data errors; ii) unreliable – when the node can generate/propagate random errors. We show that solving this problem is challenging, since it represents a non-deterministic polynomial-time (NP) hard dynamic combinatorial optimization problem depending on the unknown distribution of hidden nodes' states and time-varying parameters (connections and resources of nodes) which can only be observed locally. To tackle these challenges, we develop a new deep learning (DL) model based on the message passing graph neural network (MPNN) to estimate hidden nodes' states in dynamic network environments. We then propose a novel algorithm based on the integration of MPNN-based DL and online alternating direction method of multipliers (ADMM) – extension of the well-known classical “static” ADMM to dynamic settings, where the slicing problem is solved distributedly, in real time, based on local information. We prove that our algorithm converges to a global optimum of our problem with a superior performance even in the highly-dynamic, unreliable scenarios.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
EI入藏号
20231413850849
EI主题词
Combinatorial optimization ; Computation theory ; Deep learning ; Graph neural networks ; Graph theory ; Heuristic algorithms ; Message passing ; Polynomial approximation ; Random errors
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Computer Programming:723.1 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Optimization Techniques:921.5 ; Numerical Methods:921.6
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85151489034
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10083276
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/524271
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.School of Computer Science and Engineering, Nanyang Technological University, Singapore
3.Graduate School of Science and Engineering, Chitose Institute of Science and Technology, Chitose, Hokkaido, Japan
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Asheralieva,Alia,Niyato,Dusit,Miyanaga,Yoshikazu. Efficient Dynamic Distributed Resource Slicing in 6G Multi-Access Edge Computing Networks with Online ADMM and Message Passing Graph Neural Networks[J]. IEEE Transactions on Mobile Computing,2023,PP(99):1-18.
APA
Asheralieva,Alia,Niyato,Dusit,&Miyanaga,Yoshikazu.(2023).Efficient Dynamic Distributed Resource Slicing in 6G Multi-Access Edge Computing Networks with Online ADMM and Message Passing Graph Neural Networks.IEEE Transactions on Mobile Computing,PP(99),1-18.
MLA
Asheralieva,Alia,et al."Efficient Dynamic Distributed Resource Slicing in 6G Multi-Access Edge Computing Networks with Online ADMM and Message Passing Graph Neural Networks".IEEE Transactions on Mobile Computing PP.99(2023):1-18.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Asheralieva,Alia]的文章
[Niyato,Dusit]的文章
[Miyanaga,Yoshikazu]的文章
百度学术
百度学术中相似的文章
[Asheralieva,Alia]的文章
[Niyato,Dusit]的文章
[Miyanaga,Yoshikazu]的文章
必应学术
必应学术中相似的文章
[Asheralieva,Alia]的文章
[Niyato,Dusit]的文章
[Miyanaga,Yoshikazu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。